

SUPRA SERVER PDM

RDM PL/I Programming Guide
(OS/390 & VSE)

P26-8331-62

SUPRA® Server PDM RDM PL/I Programming Guide (OS/390 & VSE)

Publication Number P26-8331-62

 1987, 1991, 1993, 1998, 2000, 2002 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

UniSQL™ is a trademark of UniSQL, Inc.
ObjectStudio® is a registered trademark of CinMark Systems, Inc.

All other trademarks are trademarks or registered trademarks of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
U. S. A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

www.cincom.com

Release information for this manual

The SUPRA Server PDM RDM PL/I Programming Guide (OS/390 &
VSE), P26-8331-62, is dated January 15, 2002. This document
supports Release 2.7 of SUPRA Server PDM in IBM mainframe
environments.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for SUPRA Server PDM

FAX: (513) 612-2000
 Attn: SUPRA Server Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
 Attn: SUPRA Server Support
 55 Merchant Street
 Cincinnati, OH 45246-3732
 U. S. A.

mailto:helpna@cincom.com

RDM PL/I Programming Guide v

Contents

About this book ix
Using this document... ix

Document organization ... ix
Revisions to this manual ..x
Conventions .. xi

SUPRA Server documentation series .. xiv

Overview of PL/I application programming with RDM 17
Application programming overview ...18
Using RDM to write PL/I programs..21

Understanding RDM views...22
Creating user views..23
Understanding columns and keys ..23

Introduction to the Relational Data Manipulation Language (RDML)25
Introduction to the DBAID Utility subset ..26

Contents

vi P26-8331-62

Using the DBAID Utility subset 27
DBAID commands list... 28
DBAID formatting guidelines... 31
DBAID commands .. 32

= command.. 32
BYE command... 33
BY-LEVEL command... 34
CAUTIOUS command ... 36
COLUMN-TEXT command.. 37
COMMIT command ... 39
DELETE command.. 40
ERASE command.. 42
FIELD-DEFN command... 43
FORGET command... 45
GET command .. 46
GO command .. 50
INSERT command... 53
KEEP command .. 56
LINESIZE command.. 57
MARK command ... 58
MARKS command ... 59
OPEN command.. 60
PAGESIZE command.. 62
RELEASE command ... 63
RESET command.. 64
SIGN-OFF command... 65
SIGN-ON command .. 66
SURE command.. 67
UPDATE command ... 68
USER-LIST command... 70
USERS command ... 71
VIEW-DEFN command ... 72
VIEWS command .. 73
VIEWS-FOR-USER command.. 74

Contents

RDM PL/I Programming Guide vii

Coding RDM PL/I application programs 75
Using the programmer's report ...76
Coding INCLUDE statements ...77

Specifying views and user views..77
Specifying TIS_CONTROL ..78
RDM status indicators ..79

Signing on/off ..84
Maintaining storage...85

Retrieving rows using the GET statement..85
Retrieving rows containing unique keys ...86
Retrieving rows containing nonunique keys ...87
Retrieving rows without keys..87

Accessing multiple views ..88
Using the MARK statement...89
Using explicit and automatic record holding..89

Explicit record holding ..89
Automatic record holding ...90

Handling error conditions ..91
Modifying rows ..92

Updating rows ..92
Deleting rows..93

Using the INSERT statement ..94
Using the COMMIT/RESET statements..95
Handling errors requiring a recompile ...96

RDM PL/I application program statements 97
INCLUDE statements..98

INCLUDE view-data ...98
INCLUDE TIS_CONTROL ...102

Coding RDML statements ...104
COMMIT...105
DELETE ...106
FORGET ..108
GET..109
INSERT ..116
MARK...119
RELEASE...120
RESET ...121
SIGN_OFF ...122
SIGN_ON ...123
UPDATE...124

Contents

viii P26-8331-62

Compiling and linking an RDM PL/I application program 125
Executing the RDML precompiler ... 126
Linking a compiled program ... 128

OS/390... 128
VSE.. 128

OS/390 and VSE samples and procedures 129
OS/390 samples and procedures ... 129
VSE samples .. 130

Sample RDM PL/I application program 131

Index 135

RDM PL/I Programming Guide ix

About this book

Using this document
This manual is for PL/I application programmers who wish to write RDM
applications for SUPRA PDM.

Document organization
The information in this manual is organized as follows:

Chapter 1—Overview of PL/I application programming with RDM
Presents an overview of the requirements and considerations that a
PL/I programmer needs to be aware of before writing an RDM PL/I
program.

Chapter 2—Using the DBAID Utility subset
Describes DBAID utility commands.

Chapter 3—Coding RDM PL/I application programs
Presents requirements and guidelines for coding RDM PL/I
application programs.

Chapter 4—RDM PL/I application program statements
Contains format descriptions and usage considerations for the two
groups of RDM PL/I program statements.

Chapter 5—Compiling and linking an RDM PL/I application program
Presents information on the RDML precompiler, including instructions
for executing the precompiler and linking considerations for each
operating system.

Appendix A—OS/390 and VSE samples and procedures
Lists samples and procedures for running certain tasks in OS/390 or
VSE environments.

Appendix B—Sample RDM PL/I application program
Displays a sample PL/I application to execute a set of RDML
statements.

Index

About this book

x P26-8331-62

Revisions to this manual
The following changes have been made for this release:

♦ New information has been added regarding the execution of PL/I %
statements under “Executing the RDML precompiler” starting on
page 126.

♦ References to CMS have been removed.

About this book

RDM PL/I Programming Guide xi

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
PUT 'customer.dat'
GET 'miller\customer.dat'
PUT '\DEV\RMT0'

Slashed b (b/) Indicates a space (blank).
The example indicates that four
spaces appear between the
keywords.

BEGNb/b/b/b/SERIAL

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate
one of the following situations:

 A single item enclosed by brackets
indicates that the item is optional
and can be omitted.
The example indicates that you can
optionally enter a WHERE clause.

[WHERE search-condition]

 Stacked items enclosed by
brackets represent optional
alternatives, one of which can be
selected.
The example indicates that you can
optionally enter either WAIT or
NOWAIT. (WAIT is underlined to
signify that it is the default.)

(WAIT)
(NOWAIT)

About this book

xii P26-8331-62

Convention Description Example

Braces { } Indicate selection of parameters.
(Do not attempt to enter braces or
to stack parameters.) Braces
surrounding stacked items
represent alternatives, one of
which you must select.
The example indicates that you
must enter ON or OFF when using
the MONITOR statement.

MONITOR
ON
OFF

Underlining
(In syntax)

Indicates the default value supplied
when you omit a parameter.
The example indicates that if you
do not choose a parameter, the
system defaults to WAIT.

(WAIT)
(NOWAIT)

 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you can
enter either STAT or STATISTICS.

STATISTICS

Ellipsis points... Indicate that the preceding item
can be repeated.
The example indicates that you can
enter multiple host variables and
associated indicator variables.

INTO :host-variable [:ind-
variable],...

About this book

RDM PL/I Programming Guide xiii

Convention Description Example

UPPERCASE
lowercase

In most operating environments,
keywords are not case-sensitive,
and they are represented in
uppercase. You can enter them in
either uppercase or lowercase.

COPY MY_DATA.SEQ

HOLD_DATA.SEQ

Italics Indicate variables you replace with
a value, a column name, a file
name, and so on.
The example indicates that you
must substitute the name of a
table.

FROM table-name

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
' ' single quotation marks

(user-id, password, db-name)

INFILE 'Cust.Memo' CONTROL
 LEN4

SMALL CAPS Represent a keystroke. Multiple
keystrokes are hyphenated.

ALT-TAB

About this book

xiv P26-8331-62

SUPRA Server documentation series
SUPRA Server is the advanced relational database management system
for high-volume, update-oriented production processing. A number of
tools are available with SUPRA Server including DBA Functions, DBAID,
precompilers, SPECTRA, and MANTIS. The following list shows the
manuals and tools used to fulfill the data management and retrieval
requirements for various tasks. Some of these tools are optional.
Therefore, you may not have all the manuals listed. For a brief synopsis
of each manual, refer to the SUPRA Server Digest (OS/390 & VSE),
P26-9062.

Overview

♦ SUPRA Server Digest (OS/390 & VSE), P26-9062

Getting started

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM CICS Connector Systems Programming Guide
(OS/390 & VSE), P26-7452

General use

♦ SUPRA Server PDM Glossary, P26-0675

♦ SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126

About this book

RDM PL/I Programming Guide xv

Database administration tasks

♦ SUPRA Server PDM and Directory Administration Guide (OS/390 &
VSE), P26-2250

♦ SUPRA Server PDM Directory Online User’s Guide (OS/390 & VSE),
P26-1260

♦ SUPRA Server PDM Directory Batch User’s Guide (OS/390 & VSE),
P26-1261

♦ SUPRA Server PDM DBA Utilities User’s Guide (OS/390 & VSE),
P26-6260

♦ SUPRA Server PDM Logging and Recovery (OS/390 & VSE),
P26-2223

♦ SUPRA Server PDM Tuning Guide (OS/390 & VSE), P26-0225

♦ SUPRA Server PDM RDM Administration Guide (OS/390 & VSE),
P26-8220

♦ SUPRA Server PDM RDM PDM Support Supplement (OS/390 &
VSE), P26-8221

♦ SUPRA Server PDM RDM VSAM Support Supplement (OS/390 &
VSE), P26-8222

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

♦ SPECTRA Administrator’s Guide, P26-9220

About this book

xvi P26-8331-62

Application programming tasks

♦ SUPRA Server PDM DML Programming Guide (OS/390 & VSE),
P26-4340

♦ SUPRA Server PDM RDM COBOL Programming Guide (OS/390 &
VSE), P26-8330

♦ SUPRA Server PDM RDM PL/1 Programming Guide (OS/390 &
VSE), P26-8331

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

Report tasks

♦ SPECTRA User’s Guide, P26-9561

Manuals marked with an asterisk (*) are listed more than once because
you use them for multiple tasks.

Educational material is available from your regional Cincom education
department.

RDM PL/I Programming Guide 17

1
Overview of PL/I application
programming with RDM

SUPRA is an advanced relational database management system for
high-volume update-oriented processing. The Relational Data Manager
(RDM) is the SUPRA component which accepts and processes requests
from end users and application programmers. RDM retrieves the data
needed for an application program while providing database security and
integrity and insulating the application program from changes to the
database. RDM allows the application programmer to write PL/I programs
without knowing about the physical structure of the database.

RDM supports the OS/390 and VSE operating systems. Within these
operating systems, it supports the following programming languages:

♦ COBOL

♦ COBOL II

♦ CICS/VS COBOL (Command Level)

♦ MANTIS

♦ PL/I

The catalogued procedures for running DBAID, the Relational Data
Manipulation Language (RDML) precompiler and Directory reports in
your operating system are supplied on your tailored installation tape.

Chapter 1 Overview of PL/I application programming with RDM

18 P26-8331-62

Specifically, RDM simplifies the process of writing application programs
in the following ways:

♦ Application programmers and end users need no knowledge of
physical database implementation; RDM provides application
programs with data independence

♦ RDM allows the DBA to change and restructure the database without
requiring the programmer to rewrite or recompile applications

♦ Programmers have a simplified RDML for retrieving and modifying
the database contents

♦ The DBA can control the security of the database on a user-by-user
basis

Because RDM is controlled by the DBA who decides how the database
can be accessed and who can modify its contents, individual
programmers are relieved of maintaining database validity. This results
in a simpler access language, programs which are easier to write and
debug and, because changes to the database do not affect programs,
fewer maintenance tasks.

Application programming overview
This chapter presents an overview of the requirements and
considerations that a PL/I programmer needs to be aware of before
writing an RDM PL/I program. This chapter addresses:

♦ The steps for writing an application

♦ Understanding RDM views

♦ Introduction to the RDML

♦ Introduction to using the DBAID utility subset

The figure on the following page illustrates the PL/I application
programming process.

Application programming overview

RDM PL/I Programming Guide 19

Application
Program
Source

Precompiled
Source

Program

Translator
Listing

Precompiler
Listing

Compiler
Listing

Compiled
Program

Linkage
Editor

Executable
Program

CICS
Command
Translator

CICS
Translated

Source
Program

 CICS?

NO

YES

RDM PL/1
Precompiler

PL/1
Compiler

Chapter 1 Overview of PL/I application programming with RDM

20 P26-8331-62

The DBA maintains complete control over the definition and generation of
views of the data, determines data needs, and assists in determining the
best method of structuring views and relationships. The DBA controls
changes made to view definitions and should distribute copies of
definitions and changes that affect the application programmer. The
responsibilities of the DBA to the application programmer can be
summed up as follows:

♦ Defining views. The DBA defines each view by determining the
data that should be in the view and how that data should be
accessed. The DBA determines which columns are required or key
columns and which contain fixed values. The DBA also determines
whether keys are unique or nonunique and the access you have to
the data in the row—read only, update, and so on. After creating the
view, the DBA defines the view on the Directory.

♦ Changing database contents. When you use RDML commands to
modify a view, you also modify the contents of the database. The
DBA has the choice of allowing you to make such modifications to
the views. In addition, the DBA controls the ordering of the rows and
may, at any time, change the content or column length of a row.

♦ Changing View Design. The DBA can change the view design at
any time. The DBA can alter existing views, add new views, change
keys or required columns, and add to or delete information from
existing views.

♦ Providing the Programmer's Report. The DBA can provide you
with a RDM PL/I Programmer’s Report that tells you the views
available for your use. This report indicates any changes that have
been made to the views and includes any special instructions for their
use. For more detailed information about the RDM PL/I
Programmer’s Report, see “Coding RDM PL/I application programs”
on page 75.

Using RDM to write PL/I programs

RDM PL/I Programming Guide 21

Using RDM to write PL/I programs
When you write PL/I application programs using RDM, you do so using
views assigned by the DBA. Views are defined by the DBA in the
Directory by describing the required fields and by providing access to the
file(s) containing these fields. When you begin to write your program, the
DBA assigns a view that fulfills all of the data requirements and functions
of your program.

To write effective application programs, you need to understand views. A
view is a set of one or more rows describing physical field values within
the database. The following terms are integral to a discussion of views:

♦ Row. A set of one or more related data items stored in computer
memory.

♦ Column. In a row, a specified area used for a particular category of
data.

♦ Value. A quantity assigned to a constant, a variable, a parameter or
a symbol.

♦ Key. One or more data items, the contents of which identify the type
or location of a row, or the ordering of data.

♦ User View. A subset of a view which may consist of all or part of the
view.

Chapter 1 Overview of PL/I application programming with RDM

22 P26-8331-62

Understanding RDM views
RDM provides a view of physical fields from one or many files in a flat,
two-dimensional format. This set of field values is a row. A view consists
of one or more rows. RDM provides a view of data in the form of a table
which consists of rows and columns.

In a view, columns are mapped between the externally constructed row
and the physical database. During physical navigation of the database,
RDM collects certain occurrences of the physical records based on the
row definition. RDM then selects the appropriate physical fields and
maps them to the constructed row. The following figure illustrates a view:

CUSTOMER
Number

E40000
F80081
H22233

CUSTOMER
Name

DOUG REED
TOM LANGDON

ATHENS INC

CUSTOMER
Class

Q1
B4
J1

VIEW—A table of data

ROW
ROW
ROW

COLUMN COLUMN COLUMN

Picture a set of views stored sequentially as a flat file. You can retrieve
records from the file according to relative positioning within the file or by
selecting key values. The operations available to RDM (GET, INSERT,
UPDATE, and DELETE) are those needed to manipulate the records on
an occurrence-by-occurrence basis.

Although a view resembles a flat file, there are two important differences:

♦ The ordering of rows within the file is not always controlled by your
maintenance operations

♦ Fields (columns) can have null values

The DBA sets up on the Directory views available to you. Refer to the
Relational Data Manager PL/I Programmer’s Report for a list of views
available to you. See “Using the programmer's report” on page 76 for
information about this report.

Using RDM to write PL/I programs

RDM PL/I Programming Guide 23

Creating user views
You can subset the row(s) or reorder the column(s) within a view
according to your needs. This is done in the application program through
RDM language specification. This subset of data is called a user view.
Once the DBA has defined the columns included in a view, you can use
all or part of the view as a user view.

The following figure illustrates a view and a user view:

CUSTOMER-ORDER-

VIEW

Order Number
Customer Number
Part Number
Quantity Ordered
Part Cost
Total Cost
Ship Date

USER-VIEW

Part-Number
Quantity Ordered
Part-Cost

Understanding columns and keys
Each view contains one or more columns that the DBA can designate as
keys to the view. The keys can appear anywhere in the view. The DBA
can define four different types of keys:

♦ Unique key

♦ Compound unique key

♦ Simple nonunique key

♦ Compound nonunique key

The simplest view has one unique key. This key value allows you to
select and retrieve data. A unique key must have a valid, non-null value.

In a compound unique key, several columns are designated as unique
logical keys, and the combination of the key values is unique—an “and”
connection between the columns is implied. For example, to check
customer orders for a certain part number, you would use a view with
both customer number and part number as key values. RDM will retrieve
the specific customer number and part number combination if it is
present.

Chapter 1 Overview of PL/I application programming with RDM

24 P26-8331-62

A nonunique key allows more than one row to contain the same value in
a key column. An example is a customer file where you keep a list of
notes or comments concerning each customer. You do not date the
comments, and you do not want more than one key; for each customer,
you want to retrieve a list of comments that may have been posted. In
this case, the customer number could be defined as a single nonunique
key. When the program does its first GET using a customer number, it
will retrieve the first comment for that customer. A subsequent GET will
retrieve the second comment; the third GET, the third comment, and so
on. After RDM reaches the last comment for that customer, it will reach a
boundary condition and return a NOT FOUND to the program.

A compound nonunique key is an extension of the simple nonunique key.
Here, more than one column is defined as a nonunique key. However, all
the nonunique keys together still do not completely describe the record
occurrence as unique. You can still have more than one record with the
same compound nonunique key.

You can access a set of rows by assigning values to the keys of the view
(if there are any). The DBA determines which columns are keys and
defines them on the Directory. The keys can be used to locate a specific
record or to perform a generic read. Both types of reads return all
qualifying rows from the views. You can also access a set of rows
sequentially by not supplying any values for the keys.

A required column must contain a valid, non-null value in order for the
record to be included in the view. By default, a column is not required and
does not need a value.

Introduction to the Relational Data Manipulation Language (RDML)

RDM PL/I Programming Guide 25

Introduction to the Relational Data Manipulation Language
(RDML)

While your application programs are written in PL/I, RDM uses the
Relational Data Manipulation Language (RDML) to sign on and off the
system, to maintain storage, to manipulate data, and to control data
recovery. These functions are accomplished by the following RDML
statements:

♦ SIGN-ON/SIGN-OFF. The SIGN-ON statement establishes
communication between the programmer and RDM and identifies
you as the user of the system. The SIGN-OFF statement informs
RDM that you want to terminate your session.

♦ RELEASE/FORGET. The RELEASE and FORGET statements free
internal storage without signing off the system.

♦ DELETE. Removes a row from the view.

♦ GET. Retrieves a row from the view.

♦ INSERT. Inserts a new row into the view.

♦ UPDATE. Updates column values in an existing row.

♦ COMMIT/RESET. Control database recovery. These statements
function differently depending on the environment and recovery
system supported.

Using the Directory to supply working storage, RDML statements are
converted into standard PL/I source code by the RDML Compiler.
Standard compilers then convert the PL/I source code into object code.
When the program executes, the Directory uses the physical data
descriptions, and RDM uses the logical data descriptions, to access the
database and present the data in the view requested by the application
program.

For information on using the RDML, see “Coding RDM PL/I application
programs” on page 75; for the syntax of the RDML statements, see
“RDM PL/I application program statements” on page 97.

Chapter 1 Overview of PL/I application programming with RDM

26 P26-8331-62

Introduction to the DBAID Utility subset
The DBAID Utility, an online and batch tool, allows the DBA to define a
new view, open the view, issue RDML statements and examine the
results. The DBA can then change the view, if necessary, reorder for
efficiency, or try different access methods. These activities have no
impact on the Directory.

Certain DBAID commands are also available to non-DBA users. With
this subset of commands, you can use the DBAID Utility when
constructing programs that use views. You can use this subset to test a
view before actual production runs. You can run DBAID in a batch or
online environment to make sure the view fits your particular
requirements. With DBAID, you can run test cases until you are sure that
the view is correctly defined. You can also use the DBAID subset as an
educational tool for immediate hands-on experience with the views being
accessed.

DBAID has three command categories:

♦ System commands

♦ Built-in view commands

♦ RDML commands

System commands display information about the DBAID Utility currently
executing. Use system commands to display current users and active
views. Built-in view commands allow you to inspect the view after it is
opened. RDML commands let you use test data with a defined view to
make sure the view has been properly defined.

See “Using the DBAID Utility subset” on page 27 for more information on
the DBAID subset of commands available to you.

RDM PL/I Programming Guide 27

2
Using the DBAID Utility subset

A subset of the DBAID utility commands is available to the application
programmer to use for testing a view before actual production runs. To
make sure a view fits your specific requirements, DBAID can be run in a
batch or online environment. Using DBAID, you can run test cases until
you are satisfied that the view is correctly defined.

The DBAID utility subset has three command categories:

♦ System commands. These commands display information about the
currently executing DBAID Utility such as current users and active
views.

♦ Built-in view commands. Use these commands to inspect a view
after it is opened.

♦ RDML commands. Use RDML commands to test data with a
defined view to ensure the view has been properly defined.

Chapter 2 Using the DBAID Utility subset

28 P26-8331-62

DBAID commands list
The following table lists all the commands available to you by category
with a brief description and a section reference for detailed information.

Some DBAID Utility subset commands have specific underlying,
file-system restrictions. For more information on the restrictions for PDM
file systems, refer to the SUPRA Server PDM RDM PDM Support
Supplement (OS/390 & VSE), P26-8221. For information on VSAM
restrictions, refer to the SUPRA Server PDM RDM VSAM Support
Supplement (OS/390 & VSE), P26-8222.

Command Description Section

System commands
LINESIZE Specifies line width for DBAID output “LINESIZE command”

on page 57
MARKS Lists all open MARKs and the views

they are marking
“MARKS command” on
page 59

PAGESIZE Specifies the number of lines on the
page/screen for DBAID output

“PAGESIZE command”
on page 62

USER-LIST Displays column list for the view named “USER-LIST command”
on page 70

USERS Displays the current users of the
system

“USERS command” on
page 71

VIEWS Displays all views active in DBAID “VIEWS command” on
page 73

DBAID commands list

RDM PL/I Programming Guide 29

Command Description Section

Built in view commands
BY-LEVEL Displays the column names in the view

by level of occurrence
“BY-LEVEL command”
on page 34

COLUMN-TEXT Displays the short and long text for a
column in a view. (You can also code
this as FIELD-TEXT.)

“COLUMN-TEXT
command” on page 37

FIELD-DEFN Displays the full description of a
column in a view

“FIELD-DEFN
command” on page 43

VIEW-DEFN Displays a condensed description of
the view

“VIEW-DEFN
command” on page 72

VIEWS-FOR-USER Lists the views related to the signed-on
user and the short text for the view

“VIEWS-FOR-USER
command” on page 74

RDML commands
= Reissues previous RDML command “= command” on

page 32
BYE Causes the DBAID Utility to exit “BYE command” on

page 33
CAUTIOUS Prohibits an automatic COMMIT “CAUTIOUS command”

on page 36
COMMIT Makes all updates since the last

commit permanent in the database
“COLUMN-TEXT
command” on page 37

DELETE Removes a View Record occurrence
from database

“DELETE command” on
page 40

ERASE Issues an RDM RESET if an ‘X’ FSI is
returned

“ERASE command” on
page 42

FORGET Frees the storage allocated by a
previously issued MARK command

“FORGET command”
on page 45

GET Retrieves and displays the requested
row for the view indicated

“GET command” on
page 46

GO Issues multiple GET commands and
displays the rows in tabular format

“GO command” on
page 50

INSERT Places a view row in the physical
database on relative location specified

“INSERT command” on
page 53

Chapter 2 Using the DBAID Utility subset

30 P26-8331-62

Command Description Section

RDML commands (cont.)
KEEP Prohibits an automatic RESET “KEEP command” on

page 56
MARK Marks the current position of the view

name established by the previous GET
“MARK command” on
page 58

OPEN Readies either a virtual or stored view
for use by the DBAID Utility

“OPEN command” on
page 60

RELEASE Closes one or all views that have been
opened and releases the occupied
storage

“RELEASE command”
on page 63

RESET Forces task-level abend and rolls back
any database updates since the last
commit

“RESET command” on
page 64

SIGN-OFF Signs off a user from the DBAID Utility “SIGN-OFF command”
on page 65

SIGN-ON Identifies a user to the DBAID Utility “SIGN-ON command”
on page 66

SURE Causes a COMMIT after each
successful INDERST, UPDATE, or
DELETE

“SURE command” on
page 67

UPDATE Updates data values in the database “UPDATE command”
on page 68

DBAID formatting guidelines

RDM PL/I Programming Guide 31

DBAID formatting guidelines
DBAID format is a series of commands, with one command per line and
a maximum of 72 characters per command. The guidelines for formatting
DBAID in a batch environment or in an online environment are the same
except that batch output is to a line printer.

Several DBAID syntax options simplify the use of DBAID:

♦ The FOR option used with the GO command (see “GO command” on
page 50)

♦ The := syntax used with the UPDATE command (see “UPDATE
command” on page 68)

♦ The MASS option used with the INSERT command (see “INSERT
command” on page 53)

You can use an asterisk (*) in DBAID for two functions. An * entered in
column 1 denotes a comment line. For example:
OPEN VIEW

GET VIEW Performs GET on VIEW

*THIS IS A TEST VIEW

You can also use the * in a command as a substitute for the last view
name used. For example:
OPEN VIEW

GET * Performs GET on VIEW

OPEN VIEW2 = * FIELD1,FIELD5 Performs OPEN of user view
 VIEW2 where VIEW2 is created
 from VIEW1 specifying columns
 FIELD1, FIELD5 only.

GET * Performs GET on VIEW2

Using the * as a substitute for the last view name used is described in
each supported command’s explanation.

Chapter 2 Using the DBAID Utility subset

32 P26-8331-62

DBAID commands
The following sections describe the individual DBAID commands. Each
section contains a description of the command’s format, a list of
considerations for using the command, if necessary, and a coding
example or the expected output.

= command
The = command reissues the previous RDML command.

=

Example In the following example, = causes another GET NEXT CUST-PROD.
GET NEXT CUST-PROD

=

DBAID commands

RDM PL/I Programming Guide 33

BYE command
The BYE command causes you to exit the DBAID Utility.

BYE

General considerations

♦ In an online environment, the BYE command returns you to the RDM
sign-on screen or other user-installed menu screens.

♦ If you entered DBAID with the task already signed-on to RDM, the
BYE command does not perform a SIGN-OFF. If you entered DBAID
with the task signed-off from RDM, the BYE command performs a
sign-off.

♦ In a batch environment, the BYE command terminates the task.

♦ DBAID erases any unsaved virtual views.

Chapter 2 Using the DBAID Utility subset

34 P26-8331-62

BY-LEVEL command
The BY-LEVEL command displays the column names in a view by level
of occurrence, starting with the 0 level, followed by level 1, and so on.
RDM generates the column number when displaying this data.

BY-LEVEL [view-name [column-number]]

view-name

Description Optional. Specifies the name of the view whose column names you want
to display.

Format Must be a valid, open view.

Considerations

♦ If you omit this parameter, the BY-LEVEL command displays all
column names for all of your open views.

♦ You can enter an * instead of a view name. This substitutes the last
view-name used.

column-number

Description Optional. Specifies the number of the column whose name is to be
displayed.

Format Numeric characters

Considerations

♦ If you use this parameter, you must have specified a view name.

♦ If you omit this parameter, the BY-LEVEL command displays all
column names of the specified view.

DBAID commands

RDM PL/I Programming Guide 35

Example
BY-LEVEL

NUMBER VIEW NAME COLUMN NAME LEVEL

 1 CUST-PROD CUST-NO 0

 2 CUST-PROD PROD-NO 1

 3 CUST-PROD RENT 1

 4 CUST-PROD MAINT 1

 5 CUST-PROD INSTALL-DATE 1

 6 CUST-PROD CANCEL-DATE 1

 7 CUST-PROD PURCHASE-PRICE 1

 1 CUSTOMER CUST-NO 0

 2 CUSTOMER NAME 0

 3 CUSTOMER STATE 0

 1 TEST ZONED5 1

 2 TEST PACKED5 1

 3 TEST KEY2 1

Chapter 2 Using the DBAID Utility subset

36 P26-8331-62

CAUTIOUS command
The CAUTIOUS command prohibits an automatic COMMIT. This
command is the opposite of the SURE command. DBAID does not issue
a COMMIT when an RDML modifying command returns an ‘*’ FSI.
Instead, you must issue the COMMIT.

CAUTIOUS

General consideration

 DBAID normally issues a COMMIT after every successful RDML
modification. The CAUTIOUS command is not required; however, you
can use it when you want manual control over COMMIT commands when
updating the database.

DBAID commands

RDM PL/I Programming Guide 37

COLUMN-TEXT command
The COLUMN-TEXT command displays the short and long text for a
column in a view.

COLUMN-TEXT [view-name [column-name]]

view-name

Description Optional. Specifies the view to be used.

Format Must be a valid, open view.

Considerations

♦ If you omit this parameter, the COLUMN-TEXT command displays all
column descriptions for all of your open views.

♦ You can enter an * instead of a view name. This substitutes the last
view-name used.

column-name

Description Optional. Identifies the column whose text is to be displayed.

Format The column must already be a part of the view.

Considerations

♦ If you use this parameter, you must have specified a view name.

♦ If you omit this parameter, the COLUMN-TEXT command displays
the short and long text for all columns.

♦ You can substitute FIELD-TEXT as the command for COLUMN-
TEXT.

Chapter 2 Using the DBAID Utility subset

38 P26-8331-62

Example
COLUMN-TEXT CUST-PROD PROD-NO

VIEW NAME COLUMN NAME

--

CUST-PROD PROD-NO

--

 SHORT TEXT

PRCU-PROD-NUM SHORT TEXT

67890123456789012345678901234567890123456789012

 LONG TEXT

PRCU-PROD-NUM LONG TEXT 100

PRCU-PROD-NUM LONG TEXT 200

PRCU-PROD-NUM LONG TEXT 300

123456789012345678901234567890123456789012345678901234567890123456789012

DBAID commands

RDM PL/I Programming Guide 39

COMMIT command
The COMMIT command makes all updates since the last COMMIT
permanent in the database.

COMMIT

General consideration

 DBAID issues a COMMIT after every successful RDML modification
unless you have issued a CAUTIOUS command. You can use the
COMMIT command if you have issued a CAUTIOUS command.

Chapter 2 Using the DBAID Utility subset

40 P26-8331-62

DELETE command
The DELETE command removes a view row from the database.

DELETE [ALL] view-name

ALL

Description Optional. Deletes all rows retrieved by automatically generated GET
NEXTs using the logical-key qualification of the GET command issued
before the DELETE.

Consideration If a program specifies a GET without a USING phrase, DELETE ALL
deletes all rows in a view.

view-name

Description Required. Identifies the name of the view containing the row(s) to be
deleted.

Format Must be a valid, open view.

General considerations

♦ Before performing the DELETE, you must perform a successful GET
command.

♦ You can enter an * instead of a view name. This causes DBAID to
substitute the last view-name used.

DBAID commands

RDM PL/I Programming Guide 41

Examples

♦ This example deletes the one occurrence of SAMPLE-VIEW you
obtained based on the value in KEY1:

 GET SAMPLE-VIEW FOR UPDATE USING KEY1

 DELETE SAMPLE-VIEW

♦ This example deletes all occurrences of rows you obtained based on
the value in KEY1:

 GET SAMPLE-VIEW FOR UPDATE USING KEY1

 DELETE ALL SAMPLE-VIEW

♦ The previous code processes in the manner shown in this code:
 GET FIRST SAMPLE_VIEW FOR UPDATE USING KEY1;

 MORE DELETE SAMPLE_VIEW;

 GET NEXT SAMPLE_VIEW FOR UPDATE USING KEY1

 NOT FOUND GOTO CONTINUE.

 GOTO MORE;

 DONE: .

 .

 .

Chapter 2 Using the DBAID Utility subset

42 P26-8331-62

ERASE command
The ERASE command causes DBAID to automatically issue an RDM
RESET if an RDML command results in an ‘X’ FSI. This command is the
opposite of the KEEP command and causes RDM to automatically issue
a RESET if an ‘X’ FSI is returned.

ERASE

DBAID commands

RDM PL/I Programming Guide 43

FIELD-DEFN command
The FIELD-DEFN command displays the full description of columns in a
view.

FIELD-DEFN [view-name [column-name]]

view-name

Description Optional. Specifies the view to be used.

Format Must be a valid, open view.

Considerations

♦ If you omit this parameter, the FIELD-DEFN command displays all
column descriptions for all your open views.

♦ You can enter an * instead of a view name. This causes DBAID to
substitute the last view name used.

column-name

Description Optional. Identifies the column whose description is to be displayed.

Format The column must already be a part of the view.

Considerations

♦ If you use this parameter, you must specify a view name.

♦ If you omit this parameter, the FIELD-DEFN command displays all
column descriptions of the specified view.

Chapter 2 Using the DBAID Utility subset

44 P26-8331-62

Example
FIELD-DEFN

VIEW-NAME (+) CUSTOMER

COLUMN-NAME (+) CUST-NO

COLUMN-POS (+) 0

COLUMN-LEN (+) 5

ASI-POS (+) 60

COLUMN-DEC (+) 0

OUTPUT-LEN (+) 5

MASK-LEN (+) 15

FORMAT (+) Z

EDIT-MASK (+) ZZZZZZZZZZZZZZ9

READING (+) CUST;NO

DELETABLE (+) Y

INSERTABLE (+) Y

REPLACEABLE (+) N

COLUMN-LVL (+) 0

KEY-NUMBER (+) 1

REQUIRED (+) Y

UNIQUE (+) Y

EDIT-TRANS (+) E

ORDERING (-)

MORE

DBAID commands

RDM PL/I Programming Guide 45

FORGET command
The FORGET command frees the storage allocated by a previously
issued MARK command.

FORGET mark-name

mark-name

Description Required. Specifies the mark information that should be forgotten.

Format 1–30 alphanumeric characters

Consideration Must be a name you assigned with the MARK command.

General consideration

 Once you issue a FORGET command, you release the indicated mark
and cannot regain it without issuing a new MARK command.

Chapter 2 Using the DBAID Utility subset

46 P26-8331-62

GET command
The GET command retrieves and displays a row for the indicated view.

[]
[]

[][]

GET

NEXT
LAST
SAME
FIRST
PRIOR

 FOR UPDATE

AT

 ...

view-name

mark-name
USING literal literal literal1 2 n

NEXT
LAST
SAME
FIRST
PRIOR

Description Optional. Modifies the order of row retrieval.

Default NEXT If no current position exists, NEXT defaults to FIRST.

DBAID commands

RDM PL/I Programming Guide 47

Considerations

♦ For a unique key:

- GET NEXT retrieves either the row immediately after the current
row or the first row, if no current position exists.

- GET LAST retrieves the last row.

- GET SAME retrieves the latest row if a current position exists.

- GET FIRST retrieves the first row in the view.

- GET PRIOR retrieves either the row immediately before the
current row or the last row, if no current position exists.

- Use GET PRIOR only in connection with a USING KEY phrase
for predictable results.

- If the underlying file system cannot perform the GET PRIOR and
GET LAST functions, an error is returned.

♦ For a nonunique key:

- GET NEXT retrieves the next occurrence of the row within the
generic group.

- GET LAST retrieves the last occurrence of the row.

- GET SAME retrieves the latest row if a current position exists.

- GET FIRST retrieves the first occurrence of the row with the
indicated key.

- GET PRIOR will perform a read reverse within the group of
nonunique keyed rows.

view-name

Description Required. Specifies the view to be used.

Format Must be a valid, open view.

Consideration You can enter * instead of a view name. This causes DBAID to substitute
the last view name used.

Chapter 2 Using the DBAID Utility subset

48 P26-8331-62

FOR UPDATE

Description Optional. Allows you to lock out other users’ modifications to the row you
are retrieving.

Considerations

♦ The FOR UPDATE phrase allows you to perform modifications
dependent on the current contents of the row.

♦ If you do not need to be certain of the content of the row, you can use
a GET without the FOR UPDATE phrase. When you use an
UPDATE or DELETE function, the automatic-hold facility of the
system performs the lock before modifying the row.

♦ FOR UPDATE implies that all physical resources will be locked until
you issue another GET or an INSERT, UPDATE, DELETE, COMMIT,
or RESET. This practice may lead to system inefficiency.

♦ When you issue a GET, RDM can return data to you that is currently
being updated by another task. If you subsequently issue a FOR
UPDATE, that update may fail in the following ways:

- The other task has not yet committed. The update will fail with
an FSI=U status and message VIEW HELD BY ANOTHER
TASK - RETRY LATER.

- The other task committed between the GET and the update. The
update will fail with an FSI=D and the message COLUMN
VALUES HAVE BEEN CHANGED.

AT mark-name

Description Optional. Repositions a view previously marked with the MARK
command.

Consideration The USING and AT phrases cannot be used with the same GET
command.

DBAID commands

RDM PL/I Programming Guide 49

USING literal1[literal2 ... literaln]

Description Optional. Identifies a value or set of values to be used for a keyed GET.

Format Either character, hexadecimal, or numeric data. Character and
hexadecimal data must be enclosed in quotes; numeric data does not.
For example:

USING 'ABCD' Character data
USING 1234 Numeric data
USING X'A10C' Hexadecimal
USING 123 'ABC' Combination (two keys)

Considerations

♦ The number of keys specified in the GET statement must be less
than or equal to the number of keys in your specified column list. No
more than nine keys are allowed in one view.

♦ RDM treats any omitted keys as generic keys. The use of generic
keys is a convenient feature for allowing both direct access to a view
and a sequential scan of many rows. RDM returns all occurrences of
a particular, unspecified column as long as the other keys are
satisfied.

♦ The order of specified keys in the USING phrase corresponds to the
order of key declarations in your column list.

♦ The USING and AT phrases cannot be used with the same GET
command.

Chapter 2 Using the DBAID Utility subset

50 P26-8331-62

GO command
The GO command issues a penetration GET request followed by a series
of sweeping GET requests and displays the rows in tabular format.

 GO
NEXT
PRIOR

START

NEXT
LAST
SAME
FIRST
PRIOR
AT

 FOR

FROM
USING

 (...)

view-name

mark-name

number-of-rows

literal literal literal1 2 n

NEXT
PRIOR

Description Optional. Specifies the GET command modifier to be used in retrievals
after the initial penetration.

Default NEXT

view-name

Description Required. Specifies the view to be accessed.

Format Must be a valid, open view.

Consideration You can enter an * instead of a view name. This causes DBAID to
substitute the last view name used.

DBAID commands

RDM PL/I Programming Guide 51

START

NEXT
LAST
SAME
FIRST
PRIOR
AT mark-name

Description Optional. Specifies the GET command modifier to be used for the initial
penetration of the database.

Default FIRST

FOR number-of-rows

Description Optional. Indicates the number of rows (or the number of GET NEXTs
minus 1) to be performed.

Format Numeric characters

Consideration GET NEXTs repeat until the count is exhausted or until the last row is
retrieved, whichever occurs first.

[]FROM
USING ...

literal literal literal1 2 n

Description Optional. Identifies a value or set of values to use for a keyed GET.

Format Either character or numeric data. Character data, if it includes blanks,
must be enclosed in quotes; numeric data does not.

Options FROM Uses the key values only on the initial penetration; the
scan is unqualified.

USING Uses the key values for both the initial penetration and
the subsequent scan.

Chapter 2 Using the DBAID Utility subset

52 P26-8331-62

Considerations

♦ The number of keys specified in the GET statement must be less
than or equal to the number of keys in your specified column list.

♦ RDM treats any omitted keys as generic keys. The use of generic
keys allows for both direct access to a view and a sequential scan of
many rows. RDM returns all occurrences of a particular unspecified
key as long as the other keys are satisfied.

♦ The order of specified keys in the USING phrase corresponds to the
order of key declarations in your column list.

General considerations

♦ RDM displays the output in columnar fashion. If more data is to be
displayed than will fit on a screen/page, RDM uses an alternate
format.

♦ After the GO command displays a page of rows (see “PAGESIZE
command” on page 62), the “**MORE**” prompt will be issued. Enter
a blank line for each additional page in batch mode, and press ENTER
for each additional page in online mode.

♦ At the end of the series of rows retrieved by GO, the “**END**”
prompt is issued.

♦ Do not use “For number-of-rows” for online because it does not
pause until the last screen.

♦ The GO command always looks ahead one more row so it can
determine whether to display the **MORE** or **END** message. It
can be confusing if you issue a GET after the GO because a row may
appear to have been skipped.

DBAID commands

RDM PL/I Programming Guide 53

INSERT command
The INSERT command places a view row in the physical database based
on the relative location specified.

[]INSERT

NEXT
LAST
FIRST
PRIOR

 MASS

view-name

NEXT
LAST
FIRST
PRIOR

Description Optional. Specifies the relative location of the row to be inserted in
relation to existing rows. The Access Set Description (ASD) may override
this specification.

Default NEXT If not positioned in the view, NEXT defaults to LAST, and
PRIOR defaults to FIRST.

Considerations For nonuniquely keyed values:

♦ INSERT FIRST places a row in the first position in the view.

♦ INSERT NEXT places a row after the current row. If no current
position exists, the row is placed in the last position in the view.

♦ INSERT PRIOR places a row before the current row. If no current
position exists, the row is placed in the first position in the view.

♦ INSERT LAST places a row in the last position of the view.

♦ If the DBA specified ordering in the view definition, or if the Physical
Data Manager (PDM) does not allow program control of ordering, the
specification on the INSERT statement is ignored.

Chapter 2 Using the DBAID Utility subset

54 P26-8331-62

view-name
Description Required. Specifies the name of the view in which you want the rows

inserted.

Format Must be a valid, open view.

Consideration You can enter an * instead of a view name. This causes DBAID to
substitute the last view-name used.

MASS
Description Optional. Allows multiple rows to be inserted in the physical database.

Considerations
♦ The positioning parameter specified (NEXT, LAST, FIRST, or

PRIOR) is used on every RDM INSERT command issued by MASS
insert.

♦ Views are entered immediately following this command after the two
prompt lines, “MASS INSERT PROCESSING INITIATED” and
“ENTER ‘END.’ TO EXIT MASS INSERT,” are displayed (see the
second example, below).

♦ Rows are inserted as flat records. Separate the column values with
commas. To insert rows longer than one line, terminate the list of
values with a comma and continue the input on the next line.

♦ Place multiple rows on a single line by leaving a blank between rows.

♦ Use a pair of single quote marks to insert columns containing
spaces.

♦ If you have columns with no values, enter two consecutive commas
to indicate their absence. This value is treated as a null value for
packed or zoned fields, as a large number (X'40404040' or 67372036
integer) for binary fields, and as blanks for a character field.

♦ Specify END. after entering all rows to be inserted into the view. The
period after END is required.

General considerations
♦ After entering column values on a single insert (not using MASS), the

row is displayed. The message INSERT (Y/N)? appears. Enter a Y to
insert the row. Any other response does not insert the row.

♦ Processing stops if 10 errors are detected while using the MASS
insert; otherwise, enter END. to terminate insert processing.

DBAID commands

RDM PL/I Programming Guide 55

Examples

♦ Example of a single INSERT:
 > INSERT *

 NUMBER

 > 9998

 PRODUCT

 > AAAA

 INSTALLED

 > 100883

 NUMBER () 9998

 PRODUCT () AAAA

 INSTALLED () 100883

 INSERT (Y/N)?

 > Y

 FSI: * VSI: + MSG: SUCCESSFUL COMPLETION

♦ Example of a MASS INSERT (single row):
 > INSERT * MASS

 MASS INSERT PROCESSING INITIATED.

 ENTER "END." TO EXIT MASS INSERT.

 > 9997,BBBB,100783

 FSI: * VSI + MSG: SUCCESSFUL COMPLETION

 * Example of MASS insert (using comma to continue to next
line):

 > 9996,CCCC,

 > 100683

 FSI * VSI: + MSG: SUCCESSFUL COMPLETION

 * Example of a MASS insert (multiple rows on a single line):

 > 9995,DDDD,100583 9994,EEEE,100483 9993,FFFF,100383

 FSI * VSI: + MSG: SUCCESSFUL COMPLETION

 FSI * VSI: + MSG: SUCCESSFUL COMPLETION

 FSI * VSI: + MSG: SUCCESSFUL COMPLETION

 * Example of ending the MASS insert processing:

 > END.

 MASS INSERT PROCESSING COMPLETED.

Chapter 2 Using the DBAID Utility subset

56 P26-8331-62

KEEP command
The KEEP command prohibits an automatic RESET. This command is
the opposite of the ERASE command. KEEP causes DBAID not to issue
a RESET when it receives an ‘X’ FSI from RDM. Instead, DBAID keeps
the database as it is and allows the user to decide to RESET or not.

KEEP

DBAID commands

RDM PL/I Programming Guide 57

LINESIZE command
The LINESIZE command specifies the number of characters to display in
a line.

LINESIZE [number-of-characters]

number-of-characters

Description Optional. Indicates the number of characters to display on a line.

Default 79 characters per line

Format 2–3 numeric characters

Options 10–132

Considerations

♦ In an online environment, the line size maximum is restricted to the
line capacity of the screen.

♦ If you omit number-of-characters, the command displays the current
LINESIZE setting.

Chapter 2 Using the DBAID Utility subset

58 P26-8331-62

MARK command
The MARK command marks the current position of the view row
established by the previous GET command.

MARK view-name AT mark-name

view-name

Description Required. Identifies the view name established by the previous GET
command.

Format Must be a valid, open view.

Consideration You can enter an * instead of a view-name. This substitutes the last view-
name used.

AT mark-name

Description Required. Assigns a name to the location where the position of the
current view will be marked.

Format 1–30 alphanumeric characters

Consideration The name assigned is the name you use in a later GET AT request to
retrieve this same view row.

General considerations

♦ Use the AT phrase in the GET command to reposition the view at the
position set by the MARK command.

♦ You can create any number of MARKs for a view, but to save internal
memory space, it is best to reuse mark-name when possible.

♦ A mark-name may be reused.

♦ The number of MARKs you can create is limited by the amount of
internal memory space allocated to your task.

DBAID commands

RDM PL/I Programming Guide 59

MARKS command
The MARKS command lists all open MARKs and the views they are
marking.

MARKS

Example output
MARKS

 MARK NAME VIEW NAME

MARK6 CUST-PROD

MARK5 CUST-PROD

MARK4 CUST-PROD

MARK3 CUST-PROD

Chapter 2 Using the DBAID Utility subset

60 P26-8331-62

OPEN command
The OPEN command readies a saved or virtual view for use by DBAID.

OPEN [user-view-name=]view-name[column1[,...,columnn]]

user-view-name=

Description Optional. Gives an existing view a name for use in DBAID.

Format 1–30 alphanumeric characters and the special characters # and $. The
first character must be alphabetic or a special character. If the first
character is a special character, the second character must be
alphabetic.

Considerations
♦ If user-view-name is not specified, it will be the same name as the

view name.

♦ You can use this method (together with the column parameter) to
create many smaller views from one common view.

♦ To OPEN a view that has not been listed or defined in the same
session of DBAID, the user must be related to the view in the
Directory.

view-name

Description Required. Identifies the virtual or stored view to be readied for use.

Format Must be a valid view.

Considerations
♦ You can enter an * instead of a view-name. This substitutes the last

view-name used.

♦ The list of column names can be continued on successive lines by
ending the line you are entering with a comma. The command
USER-LIST displays the list of columns used to open the view after it
has been opened.

♦ Issuing an OPEN request on a view without first issuing a LIST
request causes RDM to directly open the view with the user relations
checked but without text available to DBAID.

♦ If a virtual view has the same name as a saved view, the virtual view
is used.

DBAID commands

RDM PL/I Programming Guide 61

column1[,...,columnn]

Description Optional. Identifies the column or list of columns to be included in the
user view. If omitted, all columns in the view are in the user view.

Format The columns must already be part of the view being opened.

General consideration

 The OPEN returns information about the storage used in the form of the
message:
nnnnn BYTES USED IN OPENING VIEW

 where nnnn is the amount of storage used by the view.

Example
OPEN CP-ONLY = CUST-PROD CUST-NO, PROD-NO

Only CUST-NO and PROD-NO are returned when you do GET CP-
ONLY, even though CUST-PROD has six defined columns.

Chapter 2 Using the DBAID Utility subset

62 P26-8331-62

PAGESIZE command
The PAGESIZE command specifies the number of lines to display on a
screen/page.

PAGESIZE [number-of-lines]

number-of-lines

Description Optional. Indicates the number of lines to display on a screen/page.

Default 24 lines

Options Must be greater than 10, with no maximum limit.

Considerations

♦ In an online environment, the PAGESIZE maximum should be no
more than the screen capacity.

♦ If you omit number-of-lines, the command displays the current
PAGESIZE setting.

DBAID commands

RDM PL/I Programming Guide 63

RELEASE command
The RELEASE command closes a specific view or all views that are
open, and releases the occupied storage within RDM.

RELEASE [view-name]

view-name

Description Optional. Specifies the view to release.

Format Must be a valid, open view.

Considerations

♦ You can enter an * instead of a view name. This substitutes the last
view-name used.

♦ If you omit this parameter, the RELEASE command releases all of
your open views.

General consideration

 This command does not affect virtual view text of the view(s).

Chapter 2 Using the DBAID Utility subset

64 P26-8331-62

RESET command
The RESET command rolls back any database updates since the last
COMMIT point.

RESET

General considerations

♦ Use RESET only after unsuccessful RDML updates. DBAID does not
automatically issue a RESET command when an ‘X’ FSI is returned.
See “KEEP command” on page 56 and “ERASE command” on
page 42.

♦ In CICS, a RESET backs out any database updates since the last
COMMIT point but does not restart DBAID.

♦ The RESET command restores your database to the last COMMIT
point and you lose position on all views. Therefore, the GET SAME,
DELETE, or UPDATE commands are not valid after a RESET. A
GET NEXT command positions you on the first record while a GET
PRIOR command positions you on the last record after a RESET.

DBAID commands

RDM PL/I Programming Guide 65

SIGN-OFF command
The SIGN-OFF command signs off the user from DBAID.

SIGN-OFF

General consideration

 Use the SIGN-OFF command to remove yourself as a user without
terminating DBAID.

Chapter 2 Using the DBAID Utility subset

66 P26-8331-62

SIGN-ON command
The SIGN-ON command identifies the user to DBAID.

SIGN-ON user-name [password]

user-name

Description Required. Indicates the name of the user.

Format Must be a valid user name already defined on the Directory.

password

Description Optional. Indicates the user’s password.

Format Must be a valid password defined on the Directory.

General considerations

♦ In an online environment, initializing DBAID completes the SIGN-ON
before you enter DBAID and need not be repeated.

♦ In a batch environment, DBAID blanks the password field before
printing the output.

Example
SIGN-ON JDOE PRGMPSWD

DBAID commands

RDM PL/I Programming Guide 67

SURE command
The SURE command causes a COMMIT after each successful INSERT,
UPDATE, or DELETE. The SURE command is the opposite of the
CAUTIOUS command and causes RDM to automatically issue a
COMMIT if an ‘*’ FSI that alters the database is returned by an RDML
command. SURE is the default.

SURE

Chapter 2 Using the DBAID Utility subset

68 P26-8331-62

UPDATE command
The UPDATE command updates data values in the database.

UPDATE view-name

 [column1:=literal1[,...,columnn:=literaln]]

view-name

Description Required. Identifies the view you wish to update.

Format Must be a valid, open view.

Consideration You can enter an * instead of a view name. This causes DBAID to
substitute the last view-name used.

column1:=literal1[,...,columnn:=literaln]

Description Optional. Identifies a column in the view that is to have the value of the
literal.

Format column The column must already be part of the view being
updated.

:= Must be coded as shown.

literal Character or numeric data. A hexadecimal value is not
allowed.

DBAID commands

RDM PL/I Programming Guide 69

Considerations

♦ In an online environment, DBAID displays each updateable column
and accepts replacement values. Entering a null line leaves the
column unchanged; entering new data replaces the column value in
the row. After all updateable columns are processed, DBAID displays
the “UPDATE (Y/N)” prompt and requires a response.

♦ In a batch environment, use the column:= literal syntax when
updating columns in the row. DBAID updates only the columns you
specify; all others remain the same. To update a row, indicate the
column you want to update, the :=, and the new value for the column.

♦ Do not use single quotes around character or numeric literals.

♦ Use single quotes to change the value of a column to blanks. A literal
of spaces (keyed in) must be in single quotes. Pressing ENTER does
not affect the column’s value.

♦ You cannot use the UPDATE function to modify key column values.

♦ To UPDATE a row, you must first retrieve the row using the GET
command.

♦ You cannot use UPDATE to change all the values in a defined
column to a specific value—you cannot change all PROD-CODES to
“T100.”

Example
UPDATE CUST-PROD RENT: = 175.00, MAINT = 50.00

Chapter 2 Using the DBAID Utility subset

70 P26-8331-62

USER-LIST command
The USER-LIST command displays the column list for the user view
named.

USER-LIST view-name

view-name

Description Required. Identifies the view or user view to display.

Format Must be a valid view.

Consideration You can enter an * instead of a view-name. This substitutes the last view-
name used.

Example output
USER-LIST PO-CODE-ONLY

USER VIEW NAME : PO-CODE-ONLY

VIEW NAME : CUSTOMER-PURCHASE-ORDER

USER VIEW LIST :

CUST-NO,PURCHASE-ORDER-CODE,END.

DBAID commands

RDM PL/I Programming Guide 71

USERS command
The USERS command displays information about the current users of
the system.

USERS

General considerations

♦ The information displayed with this command includes:

- Station Number—The number of the user’s station.

- User Name—The name of the user for that station.

- Time of Sign-on—The sign-on time of that user.

- Processing Time—The total CPU time that user has used.

- Request Count—The number of requests that user has issued.

- Duration of Last Request—The duration of the user’s last
request.

♦ This command is operational only in the online environment.

Example output

 In a non-CICS system, a USERS display looks like this:
STN.# USER NAME REQ. # I/O TIME SIGN-ON

LAST REQ.

102 Character Name of User 572 12:05:32 12:06:50

09:02:35

Chapter 2 Using the DBAID Utility subset

72 P26-8331-62

VIEW-DEFN command
The VIEW-DEFN command displays a condensed description of a view.

VIEW-DEFN [view-name]

view-name

Description Optional. Specifies the view whose condensed description you want to
display.

Format Must be a valid, open view.

Considerations

♦ You can enter an * instead of a view-name. This causes DBAID to
substitute the last view-name used.

♦ Omitting this parameter displays a condensed description of all your
open views.

Example
> VIEW-DEFN

VIEW-NAME (+) CUSTOMER

INS-ORDER (+) N

TOTAL-SIZE (+) 63

TOTAL-COLUMNS (+) 3

TOTAL-LEVELS (+) 1

TOTAL-DELETABLE (+) 3

TOTAL-INSERTABLE (+) 3

TOTAL-REPLACABLE (+) 3

TOTAL-REQUIRED (+) 1

TOTAL-KEYS (+) 1

TOTAL-NONUNIQUE (+) 0

MORE

DBAID commands

RDM PL/I Programming Guide 73

VIEWS command
The VIEWS command displays all of the views currently active in DBAID.

VIEWS

General consideration

 The information displayed with this command includes:

♦ User view. The name of the user view.

♦ View. The name of the view of which this user view is a part.

♦ Status. Indicates whether the user view is open or released.

Example output
 USER VIEW VIEW STATUS

CUSTOMER-PURCHASE-ORDER CUSTOMER-PURCHASE-ORDER OPENED

PO-CODE-ONLY CUSTOMER-PURCHASE-ORDER OPENED

Chapter 2 Using the DBAID Utility subset

74 P26-8331-62

VIEWS-FOR-USER command
The VIEWS-FOR-USER command lists the names and short text for the
views related to the signed-on user.

VIEWS-FOR-USER

Example output
> VIEWS-FOR-USERS

VIEW NAME DATE TIME

 SHORT DESCRIPTION

CUST-QUERY 08/17/99 17:27:32

PROD-QUERY 08/17/99 17:36:22

PRCU-QUERY 08/17/99 17:30:18

EDUC-QUERY 08/17/99 17:33:20

INST-QUERY 03/16/99 17:45:39

SYST-QUERY 10/19/99 13:34:58

...

MORE

RDM PL/I Programming Guide 75

3
Coding RDM PL/I application
programs

This chapter presents the requirements and general guidelines for coding
RDM PL/I application programs. RDM PL/I application programs are
made up of two types of statements:

♦ INCLUDE statements
♦ RDML statements
The RDML statements and their associated optional phrases are written
as part of the source language. Each RDML statement starts on a line by
itself, ends with a semicolon, and can have a label.

This chapter addresses the following RDM PL/I programming topics:

♦ Using the programmer’s report
♦ Using INCLUDE statements
♦ Signing on/off
♦ Maintaining storage
♦ Retrieving rows
♦ Modifying rows
♦ Controlling database recovery
♦ Handling error conditions
After you code your application programs, the RDML compiler converts
the statements into the proper set of assignments and CALL statements
to utilize RDM. Each RDML statement must start on a line by itself and
must end with a period. Under CICS, you must use command level PL/I;
macro level PL/I is not supported. See “Compiling and linking an RDM
PL/I application program” on page 125 for information on using the RDML
Compiler and for linking the compiled program. See “Sample RDM PL/I
application program” on page 131 for a sample RDM PL/I application
program.

Chapter 3 Coding RDM PL/I application programs

76 P26-8331-62

Using the programmer's report
RDM provides a programmer’s report which describes the layout of a
view and the column names in a view. The DBA provides the report
which should be used when you are constructing keyed GETs or when
you are determining the columns to subset for a user view.

The programmer’s report provides information about the column type,
column name, and the picture clause generated by the RDML compiler.
The column type may be KEY, NONUNIQUE KEY, or REQUIRED. See
the following example programmer’s report.

*** RELATIONAL DATA MANAGER PL/I PROGRAMMER'S REPORT FOR SCHEMA QUERYDBM ***

 VIEW: CUST-PROD

 COLUMN TYPE COLUMN NAME PICTURE

 KEY CUST-NO 9(05)

 CUST-NO

 KEY PROD-NO X(0004)

 PRCU-PROD_NUM

 RENT 9(07)V9(02) USAGE COMP-3

 MAINT 9(07)V9(02) USAGE-COMP-3

 INSTALL-DATE 9(06)

 CANCEL-DATE 9(06)

 PURCHASE-PRICE 9(07)V9(02) USAGE COMP-3

Coding INCLUDE statements

RDM PL/I Programming Guide 77

Coding INCLUDE statements
INCLUDE statements indicate which views and which columns in those
views you want to use in an application program. You can use an
INCLUDE statement anywhere you can use a PL/I DECLARE statement.
You can also have both INCLUDE and RDML statements at different
levels in your program.

Specifying views and user views
To use a specific view in your program, code an INCLUDE statement
with the name of the view. For example:
01 INCLUDE CUST.

You can create your own user view by selecting columns from a view.
This subset of the view is also specified with the INCLUDE statement.
Indicate the name of your user view as well as the columns to be
included from the view. For example:
01 CUST-MAIL INCLUDE CUST (NAME, ADDRESS, CITY, STATE, ZIP).

Unless you are accessing data values that are shared between views,
each user view can be positioned independently and can act
independently. If you create your own user view, you cannot change the
effect of required columns in terms of their being available for inserts.
However, you can modify the column order in a view.

Be aware that rearranging key columns may adversely affect your
application’s performance, and we do not recommend it.

Each INCLUDE statement also has associated row- and status-data
areas generated by RDM. The row-data area specifies where data for
each included view will be placed in the program.

The status-data area has one-to-one mapping to the fields in the row-
data area and contains one byte of information indicating whether the
data is valid, has changed since your last access, or is missing. See
“RDM status indicators” on page 79 for information on RDM status
indicators.

View names and column names used in PL/I programs must not contain
hyphens (-) but may contain the underscore (_). The DBA enters all
names into the Directory using hyphens only. Code any names in PL/I
programs with underscores, and the RDML compiler takes care of all
necessary conversion.

Chapter 3 Coding RDM PL/I application programs

78 P26-8331-62

Specifying TIS_CONTROL
You must include the special view TIS_CONTROL in each program
issuing an RDML request. TIS_CONTROL is used for passing
parameters between the application and RDM and contains operation,
status, and other information required to control access to all views.
When you specify an INCLUDE for TIS_CONTROL, the RDML compiler
generates the following:
/*

INCLUDE TIS_CONTROL;

*/

 DCL 1 TIS_CONTROL,

 2 TIS_OBJECT_NAME CHAR(30),

 2 TIS_OPERATION CHAR(6),

 2 TIS_FSI CHAR(1),

 2 TIS_VSI CHAR(1),

 2 TIS_FILLER CHAR(2),

 2 TIS_MESSAGE CHAR(40),

 2 TIS_PASSWORD CHAR(8),

 2 TIS_OPTIONS CHAR(4),

 2 TIS_CONTEXT CHAR(4),

 2 TIS_LVCONTEXT CHAR(4);

 DCL TIS_ID CHAR(2) DEF TIS_OPERATION;

 DCL TIS_OPCODE CHAR(1) DEF TIS_OPERATION POS(3);

 DCL TIS_POSITION CHAR(1) DEF TIS_OPERATION POS(4);

 DCL TIS_MODE CHAR(1) DEF TIS_OPERATION POS(5);

 DCL TIS_KEYS CHAR(1) DEF TIS_OPERATION POS(6);

If you want to pass rows to external modules (subroutines) from your
application, code an INCLUDE statement in the LINKAGE SECTION of
the subroutine instead of the WORKING_STORAGE SECTION. If a
subroutine issues any RDML commands, it must define, or be passed, a
TIS_CONTROL area.

Use the TIS_OPTIONS field to specify DEBUG and TRACE. To debug
an RDM call, place DBUG in the TIS_OPTIONS field before the call to
RDM. To trace an RDM call, place TRAC in the TIS_OPTIONS field
before the call to RDM. DEBUG and TRACE output is written to the
DMLPRINT dataset. To close the DMLPRINT file within an application,
place NBUG in the TIS_OPTIONS field before the call to RDM.

Coding INCLUDE statements

RDM PL/I Programming Guide 79

RDM status indicators
RDM returns status indicators to the application program to indicate
RDML processing results. The type and validity of the values you can
place in the columns of your program statements are determined by the
DBA. If you code a value which does not meet established criteria, you
will receive a value error in the form of a status indicator. There are three
kinds of status indicators:

♦ Function Status Indicator (FSI)

♦ Attribute (Column) Status Indicator (ASI)

♦ Validity Status Indicators (VSI)

Chapter 3 Coding RDM PL/I application programs

80 P26-8331-62

Function Status Indicator (FSI)
FSI reflects the success or failure of your RDML request. (An associated
message is provided in the TIS_MESSAGE area.) The FSIs are obtained
from TIS_CONTROL. The following code shows an example of the
generation of this control region. The RDML compiler changes RDML
requests into comments by placing an asterisk in column 7 of each
statement.

All other statements are generated by the RDML compiler.

/*
 INCLUDE TIS_CONTROL;
*/
 DCL 1 TIS_CONTROL,
.
.
 2 TIS_FSI CHAR (1),
 2 TIS_VSI CHAR (1),
.
.
 2 TIS_MESSAGE CHAR (40),

FSIs have the following meanings:

FSI value Meaning

* Successful.
D Data error. The request would have run with valid

values in the columns. You need to check the ASIs to
find the column(s) that contains the invalid value.

F Fail. Indicates a major error. Something may be wrong
with the database, or you may have attempted to
perform an illegal function on the user view.

N Failure due to occurrence problem. May be due to a
GET not found or an INSERT duplicate found.

S Security.
U Unavailable resources.
X RESET recommended. While processing, RDML

function modifications were made to the database
before the error condition was detected. Issue a
RESET to restore the database. This code overrides D,
F, S, or U indicators.

Coding INCLUDE statements

RDM PL/I Programming Guide 81

Attribute (Column) Status Indicator (ASI)
ASI reflects the status of each column defined in your view. ASIs have
one-to-one mapping to each column in the user view and are placed
immediately following the last column in your user view.

You can access ASIs through PL/I-assigned names generated by the
RDML compiler. When you code your program, an INCLUDE statement
for the user view is required. The RDML compiler generates a field for
each column included in the user view. The RDML compiler also
generates a field for each required ASI column by preceding each
column name with the characters ASI_. When you have a data column
name containing more than 26 characters, the RDML compiler truncates
any trailing characters when forming the column status field. The
following is an example of this generation:
/*

INCLUDE CUST_PROD;

*/

 DCL 1 TIS_CUST_PROD,

 2 FILLER CHAR(30) INIT ('CUST_PROD'),

 2 FILLER0001 CHAR(10) INIT (5ZCUST_NO,'),

 2 FILLER0002 CHAR(10) INIT ('4CPROD_NO,'),

 2 FILLEND CHAR(04) INIT ('END.');

 DCL 1 RDM_CUST_PROD,

 2 CUST_PROD,

 3 CUST_NO PIC '(4)9T',

 3 PROD_NO CHAR(4),

 2 ASI_CUST_PROD,

 3 ASI_CUST_NO CHAR(1),

 3 ASI_PROD_NO CHAR(1);

The asterisk indicates the statement you code; the RDML compiler
generates all other statements.

Chapter 3 Coding RDM PL/I application programs

82 P26-8331-62

ASIs have the following meanings:

ASI value Meaning

= The column exists and has not changed since the last
access. (Valid for GET processing only.)

- The column is missing. It has a null value. (Valid for
GET processing only.)

+ The column exists but has changed since the last
access. (Valid for GET processing only.)

V The column contains an invalid value.
C Column value changed by another view.
N Used to set a column to its null value. (INSERT and

UPDATE processing only. RDM never returns this.)

There are four ways to use ASIs:

♦ When you issue a GET command, certain returned columns may not
have a value. You can check this status (on unaltered columns) with
the ASI.

♦ If you receive an FSI indicating a data error, you can use the ASI to
find the columns that have illegal values.

♦ When a view contains packed or zoned values, the ASIs allow you to
avoid unintentional abends. You can do this by examining each ASI
for such columns before performing arithmetic or move operations. If
the ASI for a column is ‘V’, the value is actually placed in the row
even though it is not in a valid format. When a ‘-’ ASI is returned, the
field value is a valid zero value for packed, zoned, and binary fields.

Note that +, - and = are only meaningful on GET processing. Your
application program ignores these values on INSERT, DELETE and
UPDATE processing. INSERT, DELETE, and UPDATE processing
returns ASIs of +, C, or V.

♦ For INSERT or UPDATE processing, moving ‘N’ to the ASI for a
column before the function is performed indicates the column is null.

Coding INCLUDE statements

RDM PL/I Programming Guide 83

Validity Status Indicator (VSI)
VSI reflects the validity of the user view row returned by your last RDML
request. RDM returns the VSI to the program in an area generated as
part of the programmer-supplied TIS_CONTROL statement. The VSI
helps you determine if any additional processing of ASIs is needed to
correct invalid data or to fill in missing values. FSIs help you determine
the most significant ASI returned by RDM, according to the hierarchy
indicated in the chart below:

VSI value Meaning

C Column value changed by another view.
V At least one invalid ASI was returned.
- No invalid ASIs were returned, but at least one missing

ASI was returned.
+ No invalid or missing ASIs were returned, but at least

one new physical occurrence in the database was
returned.

= No invalid, missing, or new physical occurrences were
returned by this RDM function.

Chapter 3 Coding RDM PL/I application programs

84 P26-8331-62

Signing on/off
The only requirement for coding RDM PL/I statements is that you must
supply a user name with the SIGN_ON statement. A password is
optional, but you must supply it if you have been assigned a password in
the Directory. At run time, RDM checks the Directory for the validity of
the user name (and password, if necessary).

The SIGN_ON statement establishes communication between a task and
the RDM. A task can be a batch job or an online task. When an RDM
PL/I program is a subroutine to another RDM task, the task as a whole is
already signed on, and an additional sign-on is required only if you are
changing the user I.D.

Sign off an RDM PL/I subroutine only if the logical unit of work is
complete and will do no further RDM processing before the next
SIGN_ON.

The SIGN_OFF statement tells RDM that you want to terminate your
session. RDM will release the storage areas acquired. Issue a
SIGN_OFF at the end of every application program.

An example of an RDM PL/I subroutine is an interface to MANTIS.
MANTIS using RDM takes care of the SIGN_ON (when processing a
view statement) and the SIGN_OFF (when the task is terminating). If the
RDM PL/I interface issues a SIGN_OFF, the logical unit of work may be
invalid, and the task as a whole will no longer be communicating with the
RDM.

For pseudoconversational applications under CICS, rules for signing
on/off are different. RDM supports pseudoconversational applications by
keeping available to the next program executed (at the same terminal)
the internal content areas acquired for a program. An application
program must issue an RDM COMMIT instead of a SIGN_OFF before
releasing control to CICS. The next application program must not issue a
SIGN_ON; omitting the SIGN_ON indicates a continuation of the
previous task.

Maintaining storage

RDM PL/I Programming Guide 85

Maintaining storage
Use the RELEASE and FORGET statements to free internal storage
without signing off the system. Use FORGET to release the storage
allocated by a MARK statement (see “Using the MARK statement” on
page 89).

Use RELEASE to close a specific view and free the storage allocated for
that one view. If you do this, you lose any MARKs associated with that
view. The RELEASE statement is also useful when you are accessing
multiple views and want to remove all MARKs. You can use RELEASE
(without specifying a view name) to close all views and free all allocated
storage. If you do this, you remove all MARKs, and you lose the current
position in all views you are using.

Retrieving rows using the GET statement
You can retrieve three types of rows using the GET statement:

♦ Rows containing unique keys

♦ Rows containing nonunique keys

♦ Rows containing no keys

The USING phrase in the GET statement indicates which key values to
use to access the view. The system goes to the indicated view and
retrieves the row for that particular customer.

Chapter 3 Coding RDM PL/I application programs

86 P26-8331-62

Retrieving rows containing unique keys
If the row you want to retrieve has a unique key (ACCOUNT_NUMBER)
and your program supplies a value for the unique key, the GET command
retrieves the specific row having that key. For example:
ACCOUNT_NUMBER = 71560;

GET ACCOUNT_DATA USING ACCOUNT_NUMBER;

RDM retrieves the row in the view, ACCOUNT_DATA, for the
ACCOUNT_NUMBER indicated.

You can retrieve in sequential order all user rows with unique keys. The
statement GET FIRST instructs the system to retrieve the first row in the
user view. For example:
GET FIRST ACCOUNT_DATA.

The statement GET NEXT retrieves the next row. For example:
GET NEXT ACCOUNT_DATA.

A GET NEXT statement automatically retrieves the first row in a user
view if no current position exists (no other GET statements have been
issued). The GET SAME statement retrieves the same row as accessed
on the previous GET statement, GET PRIOR retrieves the previous row,
and GET LAST retrieves the last row.

After the last user row has been retrieved, a NOT FOUND condition
results. Indicate what should be done in your program:
GET NEXT ACCOUNT_DATA;

NOT FOUND GOTO STOP;

Maintaining storage

RDM PL/I Programming Guide 87

Retrieving rows containing nonunique keys
You can also retrieve a row with a nonunique key in sequential order.
Again, the GET FIRST statement retrieves the first row, and the GET
NEXT statement retrieves the next row.

GET NEXT will also automatically retrieve the first row in the view if no
other commands have been issued. Keep two considerations in mind if
you use the GET NEXT statement to retrieve the first row:

♦ GET NEXT operates as GET FIRST if no current position exists.

♦ The DBA may define some nonuniquely keyed views without a logical
key for performing a direct read to the first row. In this case, the
USING phrase is invalid and causes an error. The Relational Data
Manager Programmer’s Report shows you if no columns can be used
as keys.

A NOT FOUND condition results when you reach the end of the view.
Supply a NOT FOUND clause on the GET request to tell the system what
to do.

Another method for retrieving a nonuniquely keyed user row is to include
a USING phrase and a key value with your GET command.
GET ACCOUNT_TRANS USING ACCOUNT_NO.

The remaining rows with the same key can be retrieved with a GET
NEXT command that contains a USING phrase.
GET NEXT ACCOUNT_TRANS USING ACCOUNT_NO.

The NOT FOUND condition appears after the last row with the specified
key has been retrieved.

The GET PRIOR, GET LAST, and GET SAME commands also operate
on nonuniquely keyed user rows. GET PRIOR retrieves the previous row,
GET LAST retrieves the last row, and GET SAME retrieves the same
row.

Retrieving rows without keys
You can also retrieve a row that does not contain a key. For example, by
repeatedly issuing the request, GET CUST_INFO, you can retrieve in
sequential order every row in the view, CUST_INFO. You can also use
GET FIRST, GET NEXT, GET PRIOR, GET LAST, and GET SAME to
retrieve rows without a key.

Chapter 3 Coding RDM PL/I application programs

88 P26-8331-62

Accessing multiple views
You may want to use more than one view in a program. For example, you
may want to code a program which will print a customer’s name and the
name of the part that customer ordered. Assume that you have a
customer number and order number, and you want to use the views
shown below. The columns in each view are listed below the view name.

CUSTOMER-ORDER-

VIEW

Order Number
Customer Number
Part Number
Quantity Ordered
Part Cost
Total Cost
Ship Date

CUSTOMER-VIEW

Customer Number
Customer Name
Customer Address
Customer Telephone

PRODUCT-VIEW

Part-Number
Part-Name
Part-Cost
Quantity in Stock

First, retrieve the CUSTOMER_ORDER_VIEW (using the customer
number and the order number as keys) to find the number of the part
ordered. Next, retrieve the CUSTOMER_VIEW (using the customer
number as a key) to find the customer’s name. Finally, using the part
number as a key, retrieve the PRODUCT_VIEW to find the name of the
part.
CUSTOMER_NUMBER = 12345:

ORDER_NUMBER = 67890:

GET CUSTOMER_ORDER_VIEW USING CUSTOMER_NUMBER ORDER_NUMBER:

GET CUSTOMER_VIEW USING CUSTOMER_NUMBER:

GET PRODUCT_VIEW USING CUSTOMER_ORDER_VIEW PART_NUMBER:

Using the MARK statement

RDM PL/I Programming Guide 89

Using the MARK statement
The MARK statement tells RDM to mark the current position of the view
established by the previous GET, UPDATE, or INSERT. For example:
MARK CUSTOMER_VIEW AT SAVE_LV;

The AT phrase specifies where the view MARK should be saved. You
must define the field used (SAVE_LV) in your program as a PICTURE
X(4) field. You may use the AT phrase in the GET statement to reread
the record at the position set by the MARK statement:
GET CUSTOMER_VIEW AT SAVE_LV;

Using explicit and automatic record holding
With RDM, you can choose explicit or automatic record holding. This
decision depends on program requirements and the process you use to
modify a row.

Explicit record holding
To specify explicit record holding, use the FOR UPDATE clause with the
GET statement (GET FOR UPDATE). Explicit record holding invokes the
record holding and enqueuing facilities of the underlying PDM and
prevents other tasks from modifying the row.

Explicit record holding can cause a number of problems. A row is
composed of selected physical fields from many physical files. Holding
each of these physical fields can affect views in other tasks, even though
the held view does not need the fields the other task wants to modify.
Explicit record holding can also tie up resources for long periods and
requires elaborate measures to release needed resources.

Chapter 3 Coding RDM PL/I application programs

90 P26-8331-62

Automatic record holding
Automatic record holding allows you to do the following:

♦ Access a row using a GET statement

♦ Update or delete the row without an explicit request to hold the
physical records.

This allows more efficient processing because the required record is held
immediately before the actual database modification occurs.

Modifications that affect your row can be made by other tasks between
the time you access the row and the time you update or delete it. To
prevent such modifications from being undetected, RDM checks each
column value in the row. This ensures that the column value is the
original value you retrieved. If any columns have been changed, the
following occurs:

♦ A data error

♦ You receive a ‘D’ FSI

♦ RDM flags the changed columns with a ‘C’ ASI and produces a ‘C’
VSI

♦ The column values marked with ‘C’ will not contain the new values
but will contain the original values. This allows you to save the
column values and retrieve the altered row to resolve the conflict.

Handling error conditions

RDM PL/I Programming Guide 91

Handling error conditions
When anything other than an FSI value of ‘*’ is returned, RDM performs
an automatic RESET and repositions you at the top of the view. (See
“RDM status indicators” on page 79 for a list of possible FSI values and
their meanings.) For example, if you perform a GET and then an
UPDATE on a read-only view, the UPDATE will fail and RDM will
reposition you at the top of the view. The next unqualified GET will return
the first row in the view.

To avoid an automatic RESET, you need to code an error paragraph
containing a NOT FOUND statement. The following example illustrates a
sample error-handling paragraph:
PROD_TRAN.
 GET PROD FOR UPDATE USING TRAN_PROD
 NOT FOUND DO;
 PUT SKIP EDIT (‘PROD NOT FOUND’) (A);
 CALL ERROR_ON_PROD;
 END;
ERROR_ON_PROD: PROCEDURE;
 IF TIS_FSI='F' THEN
 DISPLAY 'DUE TO A MAJOR PROBLEM ENCOUNTERED
 WHILE ACCESSING THE LOGICAL USER
 VIEW PROD, THIS TASK IS NOW
 SIGNED OFF.');
 SIGN_OFF;
 STOP;
END;

If you do not include an ERROR_ON_PROD paragraph in the program,
the RDML compiler would have generated an automatic RESET as
follows:
ERROR_ON_PROD: PROCEDURE;
 RESET;
END;

You can also add phrases (INVALID KEY, ELSE, NOT FOUND, etc.) to
your basic program statements to handle common exception conditions
in your paragraph.

When coding an error handling paragraph, the paragraph name should
have the format ERROR_ON_viewname where viewname is the name of
the view.

If you start your view processing with a GET NEXT (default) followed by a
USING phrase, (GET NEXT USING KEY1), you have qualified the row,
so GET NEXT USING returns a single row with the designated key.

If only one row has the specified logical key, a repeat of the same GET
returns a NOT FOUND error. Because an error repositions you at the top
of the view, another execution of the GET returns the correct row.

Chapter 3 Coding RDM PL/I application programs

92 P26-8331-62

Modifying rows
The DBA decides upon the modifications you can make to a row. There
are three ways to modify a row:

♦ Update the data that already exists in the row (see “Updating rows,”
below)

♦ Delete the row (see “Deleting rows” on page 93)

♦ Insert a new row (INSERT statement) (see “Using the INSERT
statement” on page 94)

Issue a COMMIT command after each logical transaction (which may
involve more than one change) to establish the modifications in the
database.

Updating rows
The UPDATE statement allows you to modify a column’s content. Before
performing UPDATE, you must access the view by using a GET
statement. For example:
GET ACCOUNT_DATA USING KEY1;

UPDATE ACCOUNT_DATA;

You cannot modify a view key using the UPDATE command. RDM does
not permit replacing a view key because you need the view key to locate
the view row to be replaced. To change a view key, first DELETE the old
row, then INSERT a new one.

Modifying rows

RDM PL/I Programming Guide 93

Deleting rows
The DELETE statement removes a row from the system. Before
performing DELETE, you must access the view by using a GET
statement. For example:
GET SAMPLE_VIEW USING KEY1;

DELETE SAMPLE_VIEW;

This example deletes the one occurrence of SAMPLE_VIEW obtained,
based on the value of KEY1.

The phrase DELETE ALL deletes all rows that would have been retrieved
by a GET FIRST followed by GET NEXTs using the parameters of the
GET statement just prior to the DELETE. In other words, the DELETE
ALL will delete all rows that depend on the key value specified on the
latest GET:
GET SAMPLE_VIEW USING KEY1;

DELETE ALL SAMPLE_VIEW;

This example deletes all rows with the key value specified.

Certain constraints apply to deletions from the database. To delete an
entity from the database means to remove an object (a product). This
differs from removing a relationship. If you have an employee who
transfers from one department to another, you do not remove the
department; you remove the relationship between the employee and the
first department.

Typically, a relationship delete can occur at any time. However, an entity
must be unrelated to any other objects before you can remove it.
Therefore, to remove the employee’s record, you must first remove the
relationship to the department and to any other objects.

Situations may arise where you want to delete an entity and the entity’s
relationships from the database. For example, if a customer cancels all
outstanding orders and wants to be removed from your customer file, you
first delete all relationships and then delete the customer. You can do
this in one RDML statement by coding DELETE ALL in the application
program, provided the DBA has allowed such an operation to occur.

Chapter 3 Coding RDM PL/I application programs

94 P26-8331-62

Using the INSERT statement
The INSERT statement adds a new user row to the database:
INSERT ACCOUNT_DATA;

If you are inserting a user row in nonuniquely keyed rows, you can control
the placement of the new row within the set of rows with the same key
value. You cannot determine the location if the DBA has already defined
an order for the view. The phrases NEXT, FIRST, LAST, or PRIOR may
be added to the INSERT command. For example, INSERT NEXT
ACCOUNT_DATA instructs the system to insert the new row after the
current row (the last row accessed) in the view.

If the view is uniquely keyed, order is already determined. If the value of
the keys to be inserted already exists, the DUP KEY condition results and
RDM performs the action specified on the DUP KEY phrase in the
INSERT statement:
INSERT ACCOUNT_DATA;

 DUP KEY GO TO ALREADY_THERE;

The constraints that apply when inserting information are the inverse of
the constraints that apply to a deletion. You can always add a new entity
(a customer), assuming you have space on the database. Typically, you
cannot add a new relationship until all the entities being related exist.
You cannot add a relationship between an employee and a department
until you have added the department and employment entities.

However, you can add an entity and a relationship in one operation. For
example, you can add a new employee and his first department
assignment in a single INSERT request, provided the DBA has allowed
this operation.

Using the COMMIT/RESET statements

RDM PL/I Programming Guide 95

Using the COMMIT/RESET statements
The COMMIT statement makes the changes to the database (INSERT,
DELETE, and UPDATE) permanent. The RESET statement instructs the
system to perform the standard error-recovery procedure for dealing with
the previous RDML request (to undo all database changes made by this
task since the last COMMIT).

When Task Level Recovery (TLR) is active, the COMMIT statement
sends all pending updates to the disk. A RESET backs out any database
updates since the last COMMIT and continues processing from the
RESET.

If TLR is not active, a RESET statement prints an error message, and the
task abends. The task abend is intentional, and the system prints
messages on the job log indicating the last function statement issued
prior to the RESET. Normally, standard database-recovery procedures
are performed, depending on the PDM being used.

In the CICS environment, RDM COMMIT/RESET logic works according
to Dynamic Transaction Backout (DTB) processing. A COMMIT makes
all updates permanent to the database and takes a CICS syncpoint. A
RESET backs out any database updates since the last COMMIT and
continues processing from the RESET.

In the CICS environment, RDM COMMIT/RESET logic works according
to DTB processing. A COMMIT makes all updates permanent to the
database and takes a CICS syncpoint. A RESET backs out any
database updates since the last COMMIT and continues processing from
the RESET.

Under CICS DTB, a rollback is performed. If you encounter an error
condition in an online environment, you can back out of the modification
by using the RESET function. This erases all modifications issued since
the last COMMIT command.

For more information about DTB processing, refer to the SUPRA Server
PDM CICS Systems Programmer’s Guide (OS/390 & VSE), P26-7452.

Chapter 3 Coding RDM PL/I application programs

96 P26-8331-62

Handling errors requiring a recompile
RDM has several checks to ensure that the program you are running is
current and that the user view it uses is the same as other applications in
the system. When an RDML command is issued in an application
program, RDM checks to see if the columns in the view, as defined in the
Directory, are the same as when the program was last compiled. If not,
an FSI status code is returned, and the program must be recompiled.

Changes requiring a recompile are:

♦ Data type change (packed to zoned decimal, etc.)

♦ Deleted column (if the column is not part of your user view, you need
not recompile)

♦ Column length change

♦ A change in the number of decimal places

Application systems are often composed of several separately compiled
programs that depend on common definitions of data items. These
programs call each other to perform special tasks. RDM checks on each
RDML call to make sure that the definition of the user view is the same
for each program. If you compile a program or subroutine with the same
user view name as another program or subroutine and the user view
definition does not match, RDM generates an error message. The data
used to perform this error checking is contained in the field list generated
at compile time by the RDML compiler.

For information on executing the RDML compiler, see “Compiling and
linking an RDM PL/I application program” on page 125.

RDM PL/I Programming Guide 97

4
RDM PL/I application program
statements

This chapter contains the format of and usage considerations for RDM
PL/I application program statements. The statements are divided as
follows:

♦ INCLUDE statements

♦ RDML statements

Some RDM PL/I program statements have specific underlying file-system
restrictions. For more information on the restrictions for PDM file
systems, refer to the SUPRA Server PDM RDM PDM Support
Supplement (OS/390 & VSE), P26-8221. For information on VSAM
restrictions, refer to the SUPRA Server PDM RDM VSAM Support
Supplement (OS/390 & VSE), P26-8222.

Chapter 4 RDM PL/I application program statements

98 P26-8331-62

INCLUDE statements
INCLUDE statements describe the information or data that the
application program is to process. This information includes format and
characteristics of input and output records, their data fields, and
miscellaneous work areas.

INCLUDE view-data
Use the INCLUDE statement to indicate which views your program needs
and where to place them.

INCLUDE [user-view-name] = view-name [user-column-list];

user-view-name

Description Optional. Specifies the name to assign to the user view. This name is
used in the RDML commands.

Format Must follow PL/I naming standards

view-name

Description Required. Indicates the view you want to use. If you do not specify a
user-view-name, this name is used as the user-view-name in RDML
commands.

Format Must be a valid view name.

INCLUDE statements

RDM PL/I Programming Guide 99

user-column-list

Description Optional. Indicates the columns from the particular view you want to use.

Format Must be part of a valid view.

Considerations

♦ If you do not include user columns that are required columns in the
view, you cannot perform INSERTs and some UPDATEs on the view.

♦ Modifying key order in your user view could adversely affect
performance. The DBA has defined the key order on the Directory to
maximize performance.

General considerations

♦ You can place an INCLUDE statement anywhere you can place a
DECLARE statement in a PL/I program. PL/I scoping rules apply, so
views at different program levels can have the same names.

♦ You must specify a DECLARE statement for the SYSPRINT file in
order to specify a PRINT attribute with a record size of 133. This is
required to override the default of 121 that PL/I uses if you do not
DECLARE a SYSPRINT.

♦ User column lists can enhance the performance of your application.
RDM uses lists of user columns supplied in the INCLUDE statement
to optimize the physical accesses. Performance may be improved if
you do not use all columns in the view.

♦ Place the INCLUDE statement for a particular view within the scope
of all RDML statements using that view.

Chapter 4 RDM PL/I application program statements

100 P26-8331-62

Examples
/*

 INCLUDE VIEW2 = CUST_PROD;

 */

 DCL 1 TIS_VIEW2,

 2 FILLER CHAR(30) INIT ('CUST_PROD '),

 2 FILL0001 CHAR(11) INIT

 ('5ZCUSTOMER,'),

 2 FILL0002 CHAR(10) INIT

 ('4CPROD_NO,'),

 2 FILLEND CHAR(04) INIT ('END.');

 DCL 1 RDM_VIEW2,

 2 VIEW2,

 3 CUSTOMER PIC '(4)9T',

 3 PROD_NO CHAR(4),

 2 ASI_VIEW2,

 3 ASI_CUSTOMER CHAR(1),

 3 ASI_PROD_NO CHAR(1);

 TIS_OPERATION = 'LVY---';

 TIS_OBJECT_NAME = 'VIEW2 ';

 CALL CSVIRDM(TIS_CONTROL,TIS_CONTROL,

 TIS_DATE_STAMP,

 TIS_VIEW2);

 IF TIS_FSI NE '*' THEN

 CALL ERROR_ON_VIEW2;

INCLUDE statements

RDM PL/I Programming Guide 101

/*
 INCLUDE CUST_PROD;
 */
 DCL 1 TIS_CUST_PROD,
 2 FILLER CHAR(30) INIT ('CUST_PROD
'),

 2 FILL0001 CHAR(10) INIT
 ('5ZCUST_NO,'),
 2 FILL0002 CHAR(10) INIT
 ('4CPROD_NO,'),
 2 FILL0003 CHAR(08) INIT
 ('5P2RENT,'),
 2 FILL0004 CHAR(09) INIT
 ('5P2MAINT,'),
 2 FILL0005 CHAR(15) INIT
 ('6ZINSTALL_DATE,'),
 2 FILL0006 CHAR(14) INIT
 ('6ZCANCEL_DATE,'),
 2 FILL0007 CHAR(18) INIT
 ('5P2PURCHASE_PRICE,'),
 2 FILLEND CHAR(04) INIT ('END:');

 DCL 1 RDM_CST_PROD,
 2 CUST_PROD,
 3 CUST_NO PIC '(4)9T',
 3 PROD_NO CHAR(4),
 3 RENT DEC FIXED (9,2),
 3 MAINT DEC FIXED (9,2),
 3 INSTALL_DATE PIC '(5)9T',
 3 CANCEL_DATE PIC '(5)9T',
 3 PURCHASE_PRICE DEC FIXED (9,2),
 2 ASI_CUST_PROD,
 3 ASI_CUST_NO CHAR(1),
 3 ASI_PROD_NO CHAR(1),
 3 ASI_RENT CHAR(1),
 3 ASI_MAINT CHAR(1),
 3 ASI_INSTALL_DATE CHAR(1),
 3 ASI_CANCEL_DATE CHAR(1),
 3 ASI_PURCHASE_PRICE CHAR(1);

 TIS_OPERATION = 'LVY---';
 TIS_OBJECT_NAME = 'CUST_PROD ';
 CALL CSVIRDM(TIS_CONTROL,TIS_CONTROL,
 TIS_DATE_STAMP,
 TIS_CUST_PROD);
 IF TIS_FSI NE '*' THEN
 CALL ERROR_ON_CUST_PROD;

Chapter 4 RDM PL/I application program statements

102 P26-8331-62

INCLUDE TIS_CONTROL
Use the INCLUDE TIS_CONTROL statement to include the special view,
TIS_CONTROL, in a program.

INCLUDE TIS_CONTROL;

General considerations

 Use the TIS_OPTIONS field to specify DEBUG and TRACE; code as
follows:

DBUG - DEBUG is on
NBUG - DEBUG is off
TRAC - TRACE is on

 See “Specifying TIS_CONTROL” on page 78 for instructions on coding
DEBUG and TRACE in your application program.

INCLUDE statements

RDM PL/I Programming Guide 103

Example To add the special view TIS_CONTROL to your program, code the
following statement:

/*

INCLUDE TIS_CONTROL;

*/

 DCL 1 TIS_CONTROL,

 2 TIS_OBJECT_NAME CHAR(30),

 2 TIS_OPERATION CHAR(6),

 2 TIS_FSI CHAR(1),

 2 TIS_VSI CHAR(1),

 2 TIS_FILLER CHAR(2),

 2 TIS_MESSAGE CHAR(40),

 2 TIS_PASSWORD CHAR(8),

 2 TIS_OPTIONS CHAR(4),

 2 TIS_CONTEXT CHAR(4),

 2 TIS_LVCONTEXT CHAR(4);

 DCL TIS_ID CHAR(2) DEF TIS_OPERATION;

 DCL TIS_OPCODE CHAR(1) DEF TIS_OPERATION POS(3);

 DCL TIS_POSITION CHAR(1) DEF TIS_OPERATION POS(4);

 DCL TIS_MODE CHAR(1) DEF TIS_OPERATION POS(5);

 DCL TIS_KEYS CHAR(1) DEF TIS_OPERATION POS(6);

 DCL 1 TIS_VER_DATA,

 2 TIS_DATE_STAMP,

 3 TIS_DATE CHAR(8) INIT('19840224'),

 3 TIS_TIME CHAR(6) INIT('145128');

Chapter 4 RDM PL/I application program statements

104 P26-8331-62

Coding RDML statements
RDML statements need to be on a line by themselves and end with a
semicolon (;). RDML statements can have labels. Because the
expansion of RDML statements into PL/I statements usually involves
several statements, use a do-group when placing RDML statements in
THEN and ELSE clauses.
IF expression THEN DO;

 GET VIEW1 USING KEY1;

 .

 .

 .

 UPDATE VIEW1;

 END;

 ELSE DO;

 INSERT VIEW1;

 END;

When you compile an RDM PL/I program, a special CALL to RDM is
issued for each view included in the program. The CALL statements
appear as the first statements after the declarations of the view’s data
and status areas. RDM checks each view to ensure no columns were
modified in the Directory since the last time the program was compiled,
and that the rows accessed by multiple programs have the same format
(the same column lists). If such a Directory change exists, the system
does not allow the program to execute until it has been recompiled.

Coding RDML statements

RDM PL/I Programming Guide 105

COMMIT
Use the COMMIT statement to identify a synchronized recovery point in
your program. In environments where TLR is supported, the COMMIT
statement results in a COMMIT function being issued to the PDM.

COMMIT;

General considerations

♦ In those environments where TLR is supported, the COMMIT
statement returns either a successful or restart status. In other
environments, the COMMIT statement always returns a successful
status.

♦ In a CICS environment, a CICS syncpoint function is performed.

♦ To maintain view context in the CICS pseudoconversational mode,
issue a COMMIT rather than a SIGN_OFF before task termination.
The next program executed from the same terminal can continue to
use RDM as though the task had not terminated.

Example The COMMIT statement identifies a recovery point for the task which
issues it.
/*

 COMMIT;

*/

 TIS_OPERATION = 'LVC---';

 CALL CSVIRDM(TIS_CONTROL,TIS_CONTROL,

 TIS_CONTROL,TIS_CONTROL)

 IF TIS_FSI NE '*' THEN

 CALL ERROR_ON_TIS_CONTROL;

Chapter 4 RDM PL/I application program statements

106 P26-8331-62

DELETE
Use the DELETE statement to remove a view row from the database.

DELETE [ALL] view-name;

ALL

Description Optional. Deletes all view rows that depend on the logical keys specified
by the previous GET for this view.

Consideration This statement uses the parameters of the GET statement issued just
prior to the DELETE.

view-name

Description Required. Specifies the view you want to use in your deletion.

Format Must be a valid, open view.

General considerations

♦ The DELETE statement removes an entire row.

♦ You cannot perform a DELETE if it compromises data integrity. For
example, you cannot delete a customer’s record until you delete all
outstanding orders for that customer.

♦ To ensure database integrity, a RESET must follow an X failure
status from a DELETE request. If you provide an error-handling
procedure that does not RESET following an X status on DELETE,
part of the modification may be done, and part may not be done.

♦ The DELETE ALL command deletes all records in a view if the
program specifies a GET without a qualifying USING phrase.

♦ The RDML compiler recognizes DELETE as a view request
whenever it is followed by something other than FILE. In this case,
the preprocessor issues a message that the statement was skipped
and is assumed to be a PL/I statement.

♦ The DBA may disallow DELETEs.

Coding RDML statements

RDM PL/I Programming Guide 107

Examples

♦ The following example deletes the one occurrence of
SAMPLE_VIEW based on the value of KEY1:

 GET SAMPLE_VIEW USING KEY1;

 DELETE SAMPLE_VIEW;

♦ The next example deletes all user-view records retrieved by
automatically generated GET NEXTs, using the parameters of the
GET statement just prior to the DELETE.

 GET SAMPLE_VIEW FOR UPDATE USING KEY1;

 DELETE ALL SAMPLE_VIEW;

This example has the same effect as the following set of statements:

 GET FIRST SAMPLE_VIEW FOR UPDATE USING KEY1;

 MORE: DELETE SAMPLE_VIEW;

 GET NEXT SAMPLE_VIEW FOR UPDATE USING KEY1

 NOT FOUND GOTO DONE;

 GOTO MORE;

 DONE:

 .

 .

 .

Chapter 4 RDM PL/I application program statements

108 P26-8331-62

FORGET
The FORGET statement frees the storage allocated by a previously
issued MARK statement.

FORGET data-item [NOT FOUND PL/I do-group]
 [ELSE PL/I do-group];

data-item

Description Required. Specifies the MARK information that should be forgotten.

Format Must be defined as a CHAR(4) and must contain information passed to it
by a previously issued MARK statement

NOT FOUND PL/I do-group

Description Optional. Indicates what should be done if the mark information cannot
be released.

Considerations
♦ RDM may not find a mark value if one of the following conditions is

true:

- The mark has previously been forgotten by another FORGET
statement or by a RELEASE statement.

- The data-item was never marked by a MARK statement.

- The marked data-item was somehow changed or moved.

♦ Do not precede with a semicolon.

ELSE PL/I do-group

Description Optional. Indicates what to do if the mark information release is done.

Consideration The program falls through to the next statement if you do not specify an
ELSE clause.

General considerations
♦ Issuing a FORGET statement releases the indicated mark, and you

cannot regain it without issuing a new MARK statement.

♦ After a successful FORGET, set the data-item field to spaces.

Coding RDML statements

RDM PL/I Programming Guide 109

GET
Use the GET statement to identify the row to retrieve from the indicated
view.

[]
[]

[] []

GET

NEXT
LAST
SAME
FIRST
PRIOR

 FOR UPDATE
USING ...
AT

NOT FOUND PL / 1 ELSEPL / 1

− −

− −

view-name
data-item data-item

mark data item

do group do group

1 9

;

NEXT
LAST
SAME
FIRST
PRIOR

Description Optional. Indicates row-retrieval order.

Default NEXT

Options GET NEXT Retrieves the next row with the specified keys. If you
supply no keys, GET NEXT returns the next sequential
row. If no current row exists, GET NEXT operates as
GET FIRST.

GET LAST Retrieves the last row in the view with the specified keys.
If you give no keys, RDM returns the last row.

GET SAME Retrieves the row just accessed, if a current row exists. If
no current row exists, a NOT FOUND condition results.

GET FIRST Retrieves the first row in the view with the specified keys.
If no keys are given, RDM returns the first row.

GET PRIOR Retrieves the previous row with the specified keys. If no
current row exists, GET PRIOR operates as GET LAST.

Chapter 4 RDM PL/I application program statements

110 P26-8331-62

Considerations

♦ If the underlying file system cannot perform the GET PRIOR or GET
LAST functions, an error results.

♦ A series of GET NEXTs loops back to the first row and continues if
the statement has no NOT FOUND.

♦ A GET PRIOR view without a USING phrase returns a row, if there is
a currently established position for a given key in a row. However,
after processing all prior rows for the key, RDM returns the message:
PDM DOES NOT SUPPORT THIS OPERATION.

view-name

Description Required. Specifies the name of the view you want to use.

Format Must be a valid view name.

FOR UPDATE

Description Optional. Allows you to lock out other users’ modifications to the row
record you are retrieving.

Considerations

♦ The FOR UPDATE phrase allows you to perform modifications that
depend on the current contents of the row.

♦ If you do not need to be certain of the content of the row, you can use
a GET without the FOR UPDATE phrase. When RDM performs the
UPDATE or DELETE function, the automatic hold facility performs
the lock before modifying the row.

♦ Using FOR UPDATE may decrease overall system performance. If
any column values have changed before performing a DELETE or
UPDATE, the function produces a data error (‘D’ FSI) and flags the
changed columns with a ‘C’ ASI.

Coding RDML statements

RDM PL/I Programming Guide 111

USING data-item1[...data-item9]

Description Optional. Specifies the key values to use in accessing the view.

Format The data items must be part of a valid view

Considerations

♦ The number of keys specified in the GET statement must be less
than or equal to the number of keys in your specified column list.

♦ RDM treats any omitted keys as generic keys. Generic keys are
convenient for allowing both direct access to a row and a sequential
scan of many rows. RDM returns all occurrences of a particular
unspecified column as long as the other keys are satisfied.

♦ The order of specified keys in the USING phrase must correspond to
the order of key declarations (left to right) in your Programmer’s
Report or your user view (see the INCLUDE statement, “INCLUDE
view-data” on page 98). You cannot omit a key that occurs between
two keys you want to specify. (For example, you cannot include KEY1
and KEY3 without including KEY2.)

♦ The USING phrase cannot be used with a GET SAME statement or
with an AT phrase.

♦ If there is only one row for a given key and you try to use the same
key with a GET USING statement (to access the row a second time),
you receive an OCCURRENCE NOT FOUND message. This
message indicates there are no more occurrences with this particular
logical-key specification. In order to access this same row most
efficiently, use a GET SAME statement instead.

♦ The logical key can use up to nine data items.

Chapter 4 RDM PL/I application program statements

112 P26-8331-62

AT mark-data-item

Description Optional. Repositions a view based on the mark obtained by a previous
MARK statement.

Format Must be a CHAR(4) data-item.

Considerations

♦ The data-item contains information generated by a previous MARK
statement.

♦ You cannot use the USING and AT phrases in the same GET
statement.

♦ You cannot specify the AT phrase in a statement using the FIRST,
NEXT, PRIOR, LAST, or SAME positional qualifiers.

NOT FOUND PL/I do-group

Description Optional. Indicates what RDM is to do if it finds no data.

Considerations

♦ Data may not be found due to one or more of the following reasons:

- No data is available for a keyed GET.

- All the existing data is exhausted for a generic GET.

- All the data available to the user view is exhausted for a
nonkeyed GET.

- A series of GET NEXTs loops back to the first row and continues
if the program does not check for a NOT FOUND.

♦ Do not precede with a semicolon.

Coding RDML statements

RDM PL/I Programming Guide 113

ELSE PL/I do-group

Description Optional. Indicates what RDM is to do if good data is found.

Consideration The program falls through to the next statement if you do not specify an
ELSE clause.

General consideration

 The RDML compiler does not recognize GET as an RDML statement if it
is followed by any of the following:

♦ FILE, STRING, LIST, COPY, DATA, EDIT, or SKIP

♦ A left parenthesis (()

 In these cases, a warning message results, indicating that the RDML
compiler skipped the statement and assumed it to be a PL/I statement.

Examples

♦ The following statement retrieves the first row in the view PROD that
matches the supplied key value. The PROD_TRAN field contains the
key value used for retrieving the row.

 /*
 GET PROD USING PROD_TRAN;
 */
 TIS_OBJECT_NAME = 'PROD ';
 PROD.PROD_NO
 = PROD_TRAN;
 TIS_OPERATION = 'LVG_R1';
 CALL CSVIRDM(TIS_CONTROL,
 RDM_PROD,
 TIS_DATE_STAMP,
 TIS_PROD);
 IF TIS_FSI NE '*' THEN
 CALL ERROR_ON_PROD;

♦ This statement retrieves the view using the KEY PROD_TRAN. The
USING phrase indicates that a key is used to retrieve the view.

 /*
 GET PROD FOR UPDATE USING PROD_TRAN;
 */
 TIS_OBJECT_NAME = 'PROD ';
 PROD.PROD_NO
 = PROD_TRAN;
 TIS_OPERATION = 'LVG_U1';
 CALL CSVIRDM(TIS_CONTROL,
 RDM_PROD,
 TIS_DATE_STAMP,
 TIS_PROD);
 IF TIS_FSI NE '*' THEN
 CALL ERROR_ON_PROD;

Chapter 4 RDM PL/I application program statements

114 P26-8331-62

♦ This statement retrieves a view marked and saved for later access.
 /*
 GET PROD AT PROD_MARK;
 */
 TIS_OBJECT_NAME = 'PROD ';
 TIS_CONTEXT = PROD_MARK:
 TIS_OPERATION = 'LVGARO';
 CALL CSVIRDM(TIS_CONTROL,
 RDM_PROD,
 TIS_DATE_STAMP,
 TIS_PROD);
 IF TIS_FSI NE '*' THEN
 CALL ERROR_ON_PROD;

♦ Repeatedly issuing this request retrieves all PROD rows in the view.
 /*
 GET PROD;
 */
 TIS_OBJECT_NAME = 'PROD ';
 TIS_OPERATION = 'LVG_RO
 CALL CSVIRDM(TIS_CONTROL,
 RDM_PROD,
 TIS_DATE_STAMP,
 TIS_PROD);
 IF TIS_FSI NE '*' THEN
 CALL ERROR_ON_PROD;

♦ This request retrieves the row for update.
 /*
 GET PROD FOR UPDATE;
 */
 TIS_OBJECT_NAME = 'PROD ';
 TIS_OPERATION = 'LVG_UO';
 CALL CSVIRDM(TIS_CONTROL,
 RDM_PROD,
 TIS_DATE_STAMP,
 TIS_PROD);
 IF TIS_FSI NE '*' THEN
 CALL ERROR_ON_PROD;

Coding RDML statements

RDM PL/I Programming Guide 115

♦ The following statements retrieve rows in the specified order (NEXT,
LAST, SAME, FIRST, and PRIOR):

 /*
 GET NEXT PROD;
 */
 TIS_OBJECT_NAME = 'PROD ';
 TIS_OPERATION = 'LVGNRO';
 CALL CSVIRDM(TIS_CONTROL,
 RDM_PROD,
 TIS_DATE_STAMP,
 TIS_PROD);
 IF TIS_FSI NE '*' THEN
 CALL ERROR_ON_PROD;

 /*
 GET LAST PROD;
 */
 TIS_OBJECT_NAME = 'PROD ';
 TIS_OPERATION = 'LVGLRO';
 CALL CSVIRDM(TIS_CONTROL,
 RDM_PROD,
 TIS_DATE_STAMP,
 TIS_PROD);
 IF TIS_FSI NE '*' THEN
 CALL ERROR_ON_PROD;

 /*
 GET SAME PROD;
 */
 TIS_OBJECT_NAME = 'PROD ';
 TIS_OPERATION = 'LVGSRO;
 CALL CSVIRDM(TIS_CONTROL,
 RDM_PROD,
 TIS_DATE_STAMP,
 TIS_PROD);
 IF TIS_FSI NE '*' THEN
 CALL ERROR_ON_PROD;

 /*
 GET FIRST PROD;
 */
 TIS_OBJECT_NAME = 'PROD ';
 TIS_OPERATION = 'LVGFRO';
 CALL CSVIRDM(TIS_CONTROL,
 RDM_PROD
 TIS_DATE_STAMP,
 TIS_PROD);
 IF TIS_FSI NE '*' THEN
 CALL ERROR_ON_PROD;

 /*
 GET PRIOR PROD;
 */
 TIS_OBJECT_NAME = 'PROD ';
 TIS_OPERATION = 'LVGPRO';
 CALL CSVIRDM(TIS_CONTROL,
 RDM_PROD,
 TIS_DATE_STAMP,
 TIS_PROD);
 IF TIS_FSI NE '*' THEN
 CALL ERROR_ON_PROD;

Chapter 4 RDM PL/I application program statements

116 P26-8331-62

INSERT
The INSERT statement inserts a new row into the view.

[]INSERT

NEXT
LAST
FIRST
PRIOR

 DUP KEYPL / 1

view-name do-group ;

NEXT
LAST
FIRST
PRIOR

Description Optional. Specifies where to insert the row relative to its current position.

Default NEXT

Options INSERT NEXT Places the row after the current row, provided the keys
are the same. If the keys are different or if no current row
exists, INSERT NEXT operates as INSERT LAST.

INSERT LAST Places the row into the view so that a subsequent GET
LAST command using the same key values retrieves it.

INSERT FIRST Places the row in the view so that subsequent GET
FIRST commands using the same key values retrieve it.

INSERT PRIOR Places the row in the view before the current row,
provided the keys are the same. If the key values are
different or if there is no current row, INSERT PRIOR
operates as INSERT FIRST.

Considerations
♦ If the DBA specified ordering in the view definition, or if the PDM

does not allow program control of ordering, the specification on the
INSERT statement is ignored.

♦ To ensure database integrity, a RESET must follow an X-failure
status from an INSERT request. If you provide an error handling
procedure which does not RESET following an X status on INSERT,
it is possible that only part of the modification will be done.

Coding RDML statements

RDM PL/I Programming Guide 117

view-name

Description Required. Specifies the name of the view into which you want the rows
inserted.

Format Must be a valid, open view.

DUP KEY PL/I do-group

Description Optional. Indicates what RDM should do if the row to be inserted is
uniquely keyed, and if the value of the keys to be inserted already exists
in the database.

Consideration Do not precede this clause with a semicolon.

General considerations

♦ The DBA and/or the PDM being used may disallow ordering.

♦ You must supply all keys and required columns for the INSERT to be
successful.

♦ Your application program can update a column with a null value by
changing the ASI to N or by supplying the null value in the column.

Chapter 4 RDM PL/I application program statements

118 P26-8331-62

Examples The following examples show various ordering possibilities available to
use with the INSERT statement:
/*
 INSERT NEXT PROD;
*/
 TIS_OPERATION = 'LVIN--';
 TIS_OBJECT_NAME = 'PROD ';
 CALL CSVIRDM(TIS_CONTROL,
 RDM_PROD,
 TIS_DATE_STAMP,
 TIS_PROD);
 IF TIS_FSI NE '*' THEN
 CALL ERROR_ON_PROD;

/*
 INSERT LAST PROD;
*/
 TIS_OPERATION = 'LVIL--';
 TIS OBJECT_NAME = 'PROD ';
 CALL CSVIRDM(TIS_CONTROL,
 RDM_PROD,
 TIS_DATE_STAMP,
 TIS_PROD);
 IF TIS_FSI NE '*' THEN
 CALL ERROR_ON_PROD;

/*
 INSERT FIRST PROD;
*/
 TIS_OPERATION = 'LVIF--';
 TIS OBJECT_NAME = 'PROD ';
 CALL CSVIRDM(TIS_CONTROL,
 RDM_PROD,
 TIS_DATE_STAMP,
 TIS_PROD);
 IF TIS_FSI NE '*' THEN
 CALL ERROR_ON_PROD;

/*
 INSERT PRIOR PROD;
*/
 TIS_OPERATION = 'LVIP--';
 TIS_OBJECT_NAME = 'PROD ';
 CALL CSVIRDM(TIS_CONTROL,
 RDM_PROD,
 TIS_DATE_STAMP,
 TIS_PROD);
 IF TIS_FSI NE '*' THEN
 CALL ERROR_ON_PROD;

Coding RDML statements

RDM PL/I Programming Guide 119

MARK
Use the MARK statement to record the current position of the view
established by the last GET, UPDATE, or INSERT statement.

MARK view-name AT data-item;

view-name

Description Required. Indicates the view you want to mark.

Format Must be a valid, open view.

AT data-item

Description Required. Specifies where to save the MARK information.

Consideration Must be defined in the program as a CHAR(4) data item.

General considerations

♦ The AT phrase in the GET statement (see “GET” on page 109) is
used to reposition the view at the position set by the MARK
statement.

♦ You can create any number of MARKs for a view, but to conserve
internal memory space, it is best to reuse MARKs or to FORGET
them whenever possible.

♦ The number of MARKs that a program can have outstanding at any
time is limited by the size of the available slot. When the program no
longer requires a particular MARK, issue a FORGET command for
the data-item.

Example In this example the current position of the user view PROD is marked and
saved at PROD_MARK:
DCL PROD_MARK CHAR(4);
 .
 .
 .
MARK PROD AT PROD_MARK;
 .
 .
 .
GET PROD AT PROD_MARK;
 .
 .
 .

Chapter 4 RDM PL/I application program statements

120 P26-8331-62

RELEASE
Use the RELEASE statement to close a specific view or all views that
have been opened, and to free internal storage space allocated to the
RDML compiler.

RELEASE [view-name];

view-name

Description Optional. Specifies the view to be released.

Format Must be a valid, open view.

Consideration If you omit this parameter, all your opened views are released.

General considerations

♦ The RELEASE statement is helpful when you are accessing multiple
views. However, if you issue it without a view-name, RELEASE
removes all MARKs (see “MARK” on page 119) and loses the current
position in all views being used.

♦ The RDML compiler only recognizes a RELEASE request as valid for
a view if a semicolon follows the statement. If it finds anything other
than a semicolon, the preprocessor issues a warning message that it
skipped the statement and assumed it to be a PL/I statement.

♦ If you issue RELEASE without a view-name, reset the MARK fields in
the application to spaces.

Example
/*

RELEASE;

*/

TIS_OPERATION = 'LVR--';

CALL CSVIRDM(TIS_CONTROL,TIS_CONTROL,

 TIS_CONTROL,TIS_CONTROL);

IF TIS_FSI NE '*' THEN

 CALL ERROR_ON_TIS_CONTROL;

Coding RDML statements

RDM PL/I Programming Guide 121

RESET
Use the RESET statement to undo any UPDATE, DELETE, or INSERT
requests issued since the last COMMIT.

RESET;

General considerations

♦ If you do not supply an error-handling procedure, the preprocessor
generates an error routine that issues a RESET request to RDM, if
an error occurs.

♦ In a non-TLR batch program, this operation prints an error message
and the task abends. Normally, RDM then runs a batch recovery
program.

♦ In the CICS environment, a CICS rollback function is performed.

♦ The RESET command restores your database to the last COMMIT
point, and you lose position on all views. Therefore, the GET SAME,
DELETE, or update commands are not valid after a RESET. A GET
NEXT command positions you on the first record while a GET PRIOR
command positions you on the last record after a RESET.

Example In this example, you indicate a reset:
/*

 RESET;

*/

 TIS_OPERATION = 'LVA---';

 CALL CSVIRDM(TIS_CONTROL,TIS_CONTROL,

 TIS_CONTROL,TIS_CONTROL);

 IF TIS_FSI NE '*' THEN

 CALL ERROR_ON_TIS_CONTROL;

Chapter 4 RDM PL/I application program statements

122 P26-8331-62

SIGN_OFF
The SIGN_OFF statement informs RDM that access to the system is no
longer desired.

SIGN_OFF;

General considerations

♦ The SIGN_OFF statement releases all storage areas acquired to
service RDML requests.

♦ Issue a SIGN_OFF at the end of every application program, unless it
is a CICS/VS pseudoconversational application program. A CICS/VS
pseudoconversational application program transfers its context to the
next program run from the same terminal (see “Signing on/off” on
page 84). Use COMMIT instead of a SIGN_OFF for
pseudoconversational operation.

♦ SIGN_OFF also causes a COMMIT.

Example In this example, USER1 signs off the system:
/*

 SIGN_OFF;

*/

 TIS_OPERATION = 'LVC---';

 CALL CSVIRDM(TIS_CONTROL,TIS_CONTROL,

 TIS_CONTROL,TIS_CONTROL);

 IF TIS_FSI NE '*' THEN

 CALL ERROR_ON_TIS_CONTROL;

 TIS_OPERATION = 'LVF---';

 CALL CSVIRDM(TIS_CONTROL,TIS_CONTROL,

 TIS_CONTROL,TIS_CONTROL);

 IF TIS_FSI NE '*' THEN

 CALL ERROR_ON_TIS_CONTROL;

Coding RDML statements

RDM PL/I Programming Guide 123

SIGN_ON
The SIGN_ON statement identifies the user to RDM.

SIGN_ON user-name [password];

user-name

Description Required. Indicates the user’s name.

Format Must be assigned in the Directory.

Consideration The user-name must be a PL/I data-item name and not a literal.

password

Description Optional. Indicates the user’s password. The password is required if the
user has an assigned password in the Directory.

Format Must be assigned in the Directory.

Consideration If a password is specified, it must be a PL/I data item name and not a
literal.

General consideration
A SIGN_ON request implicitly issues a release request and frees any
previously allocated storage space.

Example In this example, SST signs on to the system:
DCL USER_IS CHAR(3) INIT ('SST');

 .

 .

 .

 .

SIGN_ON USER_ID;

Chapter 4 RDM PL/I application program statements

124 P26-8331-62

UPDATE
The UPDATE statement updates column values in the database.

UPDATE view-name;

view-name

Description Required. Indicates view name you want to update.

Format Must be a valid, open view.

General considerations
♦ Before performing an UPDATE, you must access the view using a

GET statement.

♦ Use the GET FOR UPDATE before you use the UPDATE function
when computing a new value for a row (incrementing a counter, etc.).
If you use the UPDATE function to place a value in a row, you need
not issue a GET FOR UPDATE statement that does not depend on
the values already present.

♦ You cannot update a view key. By changing the view key, you are
requesting a repositioning of the view, not a modification of the
current row. To update a view key, you must first delete the old row;
then insert a new one.

♦ To ensure database integrity, a RESET must follow an X failure
status from an UPDATE request. If you provide an error-handling
procedure that does not RESET following an X status on DELETE,
only part of the modification may be done.

♦ The use of UPDATE other than as part of a view statement is
unaffected by the RDML compiler.

♦ Your application program can update a column with a null value by
changing the ASI to N or by supplying the null value in the column.

Example The statement UPDATE PROD indicates that you want to update the
view PROD:
GET PROD USING ---;

PRODUCT_FIELD = NEW_DATA;

UPDATE PROD;

 .
 .
 .

RDM PL/I Programming Guide 125

5
Compiling and linking an RDM PL/I
application program

This chapter presents information on the RDML precompiler, including
instructions for executing the precompiler and linking considerations for
each operating system.

Using the Directory to supply working storage, RDML statements are
converted into standard PL/I source code by the RDML precompiler.
Standard compilers then convert the PL/I source code into object code.
When the program executes, the Directory uses the physical data
descriptions, and RDM uses the logical data descriptions, to access the
database and present the data in the view requested by the application
program.

You cannot use the standard PL/I compiler until the application-program
source statements (including the RDML) have gone through a preprocess
phase using the supplied RDML precompiler.

See “OS/390 and VSE samples and procedures” on page 129 for the
samples and procedures for executing the RDML precompiler in your
operating environment.

Chapter 5 Compiling and linking an RDM PL/I application program

126 P26-8331-62

Executing the RDML precompiler
There are two required parameters and two optional parameters for
precompiling RDM PL/I application programs:

♦ Actual Compiler Name. Required. You designate this name as
determined by the environment being used (either Batch or CICS).

 Batch: To precompile a batch program, supply a compiler name of
IEL0AA on the parm of the RDML precompiler execution step.

 CICS: To precompile a IEL0AA PL/I RDM program for the CICS
environment, specify the CICS command-level, preprocessor name
on the parm of the RDML compiler step. In the CICS environment,
two preprocess steps are necessary prior to executing the PL/I
compiler. The RDML preprocess must occur before the CICS
preprocess. Use a subsequent job step to execute the PL/I Compiler.
Refer to procedure TISCPLBL (OS/390), and refer to TXJPLIPP and
TXJPLICI samples (VSE) for sample JCL:
FIRST: SECOND: THIRD: PROCEDURE OPTIONS (MAIN);

 A compilation of many external procedures results in all procedures
being enrolled under the name of the first procedure. In the example
above, the program is enrolled as FIRST.

♦ BOOTMOD Name. Not used.

♦ Schema Name. Required. The DBA furnishes this parameter.

♦ Miscellaneous Parameters. Optional. Includes any parameters you
want to give to the PL/I Compiler or the CICS preprocessor.

The expansion of INCLUDE and RDML statements generates additional
statements in the PL/I program. To assist you when referring to the
program listing, the RDML precompiler places a 7-character identifier
(TIS****) in columns 74-80 of the generated source statements. If the
program includes a comment in the form /* $$ NUMBS $$ */, the
7-character identifier becomes TISnnnn, where nnnn is the line number
of the INCLUDE or RDML statement in the original PL/I program.

Executing the RDML precompiler

RDM PL/I Programming Guide 127

If you use PL/I preprocessor % statements, you need to break the
procedure into separate steps as follows:

1. Create a job stream with a first step that executes the PL/1 compiler
with certain EXEC PARMs that tell the compiler to only do the
preprocess phase.

- Specify MACRO to invoke the PL/1 preprocessor.

- Specify MDECK to generate preprocessor output. This output
goes to SYSPUNCH DD.

- Specify NODECK and NOOBJECT so this step generates no
object output. Use a temporary data set for SYSPUNCH.

2. Execute the RDM & PL/1 compile job you've been running up to now
but pass in the SYSPUNCH file from the first step as the input to
CSVPL1PP.

Chapter 5 Compiling and linking an RDM PL/I application program

128 P26-8331-62

Linking a compiled program
The following operating-system-dependent considerations apply when
you are linking a compiled PL/I application program:

OS/390
In batch OS/390, COBOL applications are linked with CSVILUV, a
composite containing CSVILOAD and DATBAS.

In OS/390 CICS, COBOL applications are linked with CSVCLUV,
CSVICICS, or CSVNICIC. If the application is to run above the
16-megabyte line or if the application allocates RDM parameters above
the 16-megabyte line, then the application must be linked with
CSVNICIC.

VSE
In batch VSE, COBOL applications are linked with CSVIOSVS, a
composite containing CSVJLUV and DATBAS.

In VSE CICS, COBOL applications are linked with CSVCLUV,
CSVICICS, or CSVNICIC. If the application is to run above the
16-megabyte line or if the application allocates RDM parameters above
the 16-megabyte line, then the application must be linked with
CSVNICIC.

RDM PL/I Programming Guide 129

A
OS/390 and VSE samples and
procedures

This appendix presents the samples and procedures for running the
following tasks in OS/390 or VSE environments:

♦ RDML precompiler

♦ Run-time support

♦ Batch DBAID

♦ Batch reports

OS/390 samples and procedures

 Single-task Central

Description Sample Procedure Sample Procedure
Batch PL/I RDML
precompiler and PL/I
compile

 TISPL1BL TISPL1CL

CICS PL/I RDML
precompiler and PL/I
compile

 TISCPLBL TISCPLCL

Batch DBAID TXJBDAID TISAIDBL TXJCDAID TISAIDCL
Batch RDM Impact of
Change Report

TXJICRPT TISICRBL TISICRCL

Batch RDM Reports TXJREPRT TISRPTBL TISRPTCL

Appendix A OS/390 and VSE samples and procedures

130 P26-8331-62

VSE samples

Description Single-task Central
RDML PL/I Precompiler TXJPL1PP
PL/I compile and link of precompiled RDML batch PL/I
applications

TXJPL1CL

CICS precompile PL/I compile and link of precompiled
RDML CICS PL/I applications

TXJPL1CI

Execute batch RDM PL/I applications TXJPL1GO
Batch DBAID TXJBDAID TXJCDAID
Batch RDM Impact of Change Report TXJICRPT
Batch RDM Reports TXJREPRT

RDM PL/I Programming Guide 131

B
Sample RDM PL/I application program

MANFPL1: PROCEDURE OPTIONS(MAIN); 00010022

 00020022

INCLUDE TIS_CONTROL; 00030022

INCLUDE RDML_MANIFEST; 00040022

 00050022

ERROR_ON_RDML_MANIFEST: PROCEDURE; 00060023

 PUT SKIP EDIT('TIS_FSI= ',TIS_FSI); 00070036

 PUT SKIP EDIT('TIS_VSI= ',TIS_VSI); 00080036

 PUT SKIP EDIT('TIS_OBJECT_NAME= ',TIS_OBJECT_NAME); 00090036

 PUT SKIP EDIT('TIS_OPERATION= ',TIS_OPERATION); 00100036

 PUT SKIP EDIT('TIS_MESSAGE= ',TIS_MESSAGE); 00110036

 PUT SKIP EDIT('TIS_PASS_WORD= ',TIS_PASS_WORD) 00120036

 END ERROR_ON_RDML_MANIFEST; 00130036

 00140036

 00150036

 DCL USER_ID CHAR(2); 00160036

 USER_ID='DR'; 00170036

 00180036

 DCL SKIP_CONTROL FIXED DECIMAL; 00190036

 00200036

 DCL PRINTR FILE PRINT; 00210036

 00220036

Appendix B Sample RDM PL/I application program

132 P26-8331-62

 DCL (GET_1ST_MANIFEST, END_OF_REPORT, 00240023

 (FIRST_DETAIL_LINE) CHAR (1) EXTERNAL; 00250023

 00260023

 00270023

 GET_1ST_MANIFEST='Y'; 00280023

 END_OF_REPORT="Y"; 00290023

 FIRST_DETAIL_LINE='Y' 00300023

 00310023

 SINON: PROCEDURE; 00320023

 SIGN_ON USER_ID; 00330036

 END SINON; 00340032

 00350032

 SINOFF: PROCEDURE; 00360023

 CLOSE FILE (PRINTR); 00370036

 00380036

 STOP; 00390036

 00400036

 SIGN_OFF 00410023

 00420023

 END SINOF; 00430023

 00440023

 DETAIL: PROCEDURE; 00450023

 00460023

 IF FIRST_DETAIL_LINE'Y'; 00470023

 SKIP_CONTROL=4; 00480023

 ELSE DO; 00490023

 SKIP_CONTROL=1; 00500023

 END; 00510023

 PUT EDIT(MANLINE_PRODUCT,PRODUCT_DESC,MANLINE_QNTY, 00530023

 MANLINE_VALUE) ((SKIP(SKIP_CONTROL), A,X(2),A, 00540023

 X(5),F(3),X(11),F(6,2); 00550023

 00560023

 00570023

VSE samples

RDM PL/I Programming Guide 133

//

 00580023

 00590023

HEADER: PROCEDURE; 00600023

 PUT PAGE EDIT('BURRYS') (X(36)); 00610024

 PUT EDIT(MANIFEST') (SKIP(3),X(10),A); 00620024

 PUT SKIP EDIT('-------') (X(10),A); 00630036

 PUT SKIP (4) EDIT('BRANCH NUMBER : ', BRANCH_ZIPCODE), 00640024

 'MANIFEST NUMBER : ',MANIFEST_NO. 00650024

 (X(16),A,A,X(35), A,A); 00660024

 PUT SKIP EDIT(BRANCH_NAME) (X(16),A); 00670024

 PUT SKIP EDIT(BRANCH_ADDR) (X(16),A); 00680024

 PUT SKIP EDIT(BRANCH_CITY, BRANCH_STATE,BRANCH_ZIPCODE) 00690024

 (X(16),A,A,A); 00700024

 PUT SKIP EDIT('PRODUCT','DESCRIPTION','QNTY','VALUE') 00710024

 (X(11),A,X,(13),A,X(14),A); 00720024

 PUT SKIP EDIT('-------','-----------','----','-----') 00730036

 (X(11),A,X,(3),A,X(13),A,X(14),A); 00740036

 00750024

 END HEADER; 00760023

 00770023

 00780023

TOTAL: PROCEDURE; 00790023

 00800023

 PUT EDIT(MANIFEST TOTAL :',MANIFEST_TOTAL) (SKIP,X(34),A,A); 00810024

 00820023

 END TOTAL: 00830023

 00840023

LSTMNF: PROCEDURE; 00850023

 00860023

Appendix B Sample RDM PL/I application program

134 P26-8331-62

LOOP: DO WHILE (TIS_FSI NE "n"); 00870036

 IF (GET_1ST_MANIFEST='Y' THEN DO; 00880023

 GET FIRST RDML_MANIFEST; 00890023

 END; 00900024

 ELSE DO: 00910024

 GET NEXT RDML_MANIFEST; 00920023

 NOT FOUND DO; 00930036

 CALL TOTAL; 00940036

 CALL SINOF; 00950036

 END; 00960024

 END: 00970036

 IF ((ASI_MANIFEST_NO='+') & (GET_1ST_MANIFEST='Y'))THEN DO: 00980024

 GET_1ST_MANIFEST=' '; 00990024

 CALL HEADER; 01000024

 END; 01010024

 ELSE DO: 01020024

 IF (ASI_MANIFEST_NO='+') THEN DO: 01030024

 CALL TOTAL; 01040024

 FIRST_DETAIL.LINE='Y'; 01050024

 CALL HEADER; 01060024

 END; 01070024

 END; 01080024

 END LOOP; 01090023

 01110023

 END LSTMNF; 01120022

 END MANFPL1; 01130000

//

RDM PL/I Programming Guide 135

Index

*

*, in DBAID 31

=

= command
description 29
example 32
syntax 32

A

abends 82, 95
ALL clause

in DELETE command 40
in DELETE statement 106

ASI. See Attribute Status
Indicator

asterisk, in DBAID 31
AT phrase

example of 89
in GET command 48
in GET statement 112
in MARK command 58
in MARK statement 119

Attribute (Column) Status
Indicator (ASI)

and binary fields 82
and current program 82
and packed vlaues 82
and zoned values 82
description 81

automatic hold 110
automatic record holding 90

B

batch recovery 95
binary fields, and ASI 82
built-in view commands. See

DBAID built-in view
commands

BYE command
description 29
syntax 33

BY-LEVEL command
description 29
example 35
syntax 34

C

catalogued procedures, for
OS/390 129

CAUTIOUS command
description 29
syntax 36

characters per line, displaying 57
CICS recovery

column definition of 21
use of 23
using COMMIT/RESET

statements 95
coding RDML statements 104

COMMIT 105
DELETE 106
FORGET 108
GET 109
INSERT 116
MARK 119
RELEASE 120
RESET 121
SIGN-OFF 122
SIGN-ON 123
UPDATE 124

column names, displaying 34, 43
column values, updating 124
column-list, displaying 70
COLUMN-TEXT command

description 29
example 38
syntax 37

COMMIT
automatic 67
prohibiting 36

COMMIT command
description 29
syntax 39

COMMIT statement 105
COMMIT/RESET logic 95
compiler 125
current program, checking for 96

Index

136 P26-8331-62

D

data validation 77
DBAID

signing-off 65
signing-on 66

DBAID built-in view commands
BY-LEVEL 29
COLUMN-TEXT 29
FIELD-DEFN 29
VIEW-DEFN 29
VIEWS-FOR-USER 29

DBAID RDML commands
= 29
BYE 29
CAUTIOUS 29
COMMIT 29
DELETE 29
ERASE 29
FORGET 29
GET 29
GO 29
INSERT 29
KEEP 30
MARK 30
OPEN 30
RELEASE 30
SIGN-OFF 30
SIGN-ON 30
SURE 30
UPDATE 30

DBAID system commands
LINESIZE 28
MARKS 28
PAGESIZE 28
USER-LIST 28
USERS 28
VIEWS 28

DBAID Utility subset
command categories 27
description 26

DBAID utility, exit from 33
DEBUG 102
DECLARE statement 77, 99
DELETE command

description 29
examples 41
syntax 40

DELETE statement
examples 107
syntax 106
using 93

DMLPRINT file 78
DUP KEY clause, in INSERT

statement 117
duration of last request,

displaying 71

E

ELSE clause
in FORGET statement 108
in GET statement 113

ERASE command
description 29
syntax 42

error handling 91, 95, 96
explicit record holding 89

F

FIELD-DEFN command
description 29
example 44
syntax 43

FOR clause, in GO command 51
FOR UPDATE phrase

in GET command 48
in GET statement 89

FORGET command
description 29
syntax 45

FORGET statement, syntax 108
formatting guidelines, for DBAID

31
FROM clause, in GO command

51
FSI. See Function Status

Indicator (FSI)
Function Status Indicator (FSI)

80

G

GET command
description 29
syntax 46

GET statement
examples 113
syntax 109

GO command
description 29
syntax 50

Index

RDM PL/I Programming Guide 137

I
INCLUDE statements, syntax 98
INCLUDE TIS-CONTROL

statement
example 103
syntax 102

INCLUDE view-data statement
examples 100
syntax 98

INSERT command
description 29
examples 55
syntax 53

INSERT statement
examples 118
syntax 116
using 94

K

KEEP command
description 30
syntax 56

key
compound nonunique 23
compound unique 23
definition of 21
nonunique 87
simple nonunique 23
simple unique 23
unique 23, 86

keys, order of, in USING phrase
111

L

lines per screen, specifying 62
LINESIZE command

description 28
syntax 57

linking a compiled program 128

M

MARK command
description 30
syntax 58

MARK statement
example 119
syntax 119

MARKS command
description 28
example 59
syntax 59

MASS clause, and INSERT
command 53, 54

memory, conserve space in 58

N

NBUG 77, 102
NOT FOUND clause

in FORGET statement 108
in GET statement 112

O

OPEN command
description 30
example 61
syntax 60

OS/390, cataloged procedures
129

P

packed values, and ASI 82
PAGESIZE command

description 28
syntax 62

parameters
passing between application

and RDM 78
using 126
with RELEASE statement 120
with UPDATE statement 124

PL/I Programmer's Report
description 75
using 76

PL/I programs, and RDM 21
precompiling PL/I application

programs 126
processing time, displaying 71
program statements 79, 91
pseudoconversational mode, and

COMMIT statement 105
pseudoconversational program,

and SIGN-OFF statement
122

Index

138 P26-8331-62

R

RDM overview 17
RDM PL/I sample application

program 131
RDML commands listed. See

DBAID
RDML commands, reissue 32
RDML precompiler

executing 126
with DELETE statement 106
with GET statement 109

recompile, when required 96
record holding

automatic 90
explicit 89

recovery point, identifying 105
recovery, database 95
relationship

delete 93
insert 94

RELEASE command
description 30
syntax 63

RELEASE statement
example 120
syntax 120

request count, displaying 71
RESET command

description 30
syntax 64

RESET statement
example 121
syntax 121

rollback
and RESET statement 121
of database updates 64

row
adding 94
definition of 21
deleting 93
modifying 92
retrieving 46
save position of 89
updating 92
using DELETE statement 93
using INSERT statement 94
using UPDATE statement 92
with GET FIRST 85, 87
with GET LAST 87
with GET NEXT 85, 86, 87

with GET PRIOR 87
with GET SAME 87
with unique key 86
without key 87

ROW
WITH NONUNIQUE KEY 87

S

sample RDM PL/I application
program 131

samples
for OS/390 129
for VSE 130

signing off 84
signing on 84
SIGN-OFF command

description 30
syntax 65

SIGN-OFF statement
described 84
example 122
syntax 122

SIGN-ON command
description 30
syntax 66

SIGN-ON statement
described 84
example 123
syntax 123

sign-on time, displaying 71
START clause, in GO command

51
station number, displaying 71
status data area 77
status indicators 78
storage

amount used information 60
freeing 85, 108
with RELEASE statement 120
with SIGN-OFF statement 122
with SIGN-ON statement 123

SURE command
description 30
syntax 67

syncpoint 84
SYSPRINT file 99
system commands. See DBAID

RDML commands

Index

RDM PL/I Programming Guide 139

T

tabluar format display 50
Task Level Recovery (TLR)

and COMMIT statement 105
in CICS environment 95

text, of column, displaying 43
TIS_CONTROL

and FSI 80
specifying 78

TLR. See Task Level Recovery
(TLR)

TRACE 78, 102

U

unsuccessful function, in RDM 91
UPDATE command

description 30
example 69
syntax 68

UPDATE statement
example 124
syntax 124
to modify a row 92

user name, displaying 71
user view, definiton of 21
user views

creating 77
specifying 77

user-column-list, in INCLUDE
statement 99

USER-LIST command
description 28
example 70
syntax 70

USERS command
description 28
example 71
syntax 71

user-view-name, in INCLUDE
statement 98

USING phrase
in GET command 49
in GET statement 111
in GO command 51

V

Validity Status Indicator (VSI)
and automatic record holding

90
description 83

value, definiton of 21
view

closing 85
creating a user 23
current position of 89
marking a position 119
preparing for use by DBAID 60
testing 27
with RELEASE command 63

view data values, updating 68
view definition, and INSERT

command 53
view description, displaying 72
view key, updating 124
view row

adding to physical database 53
deleting from database 40
multiple, inserting 54
remiving from database 106

view, multiple, accessing 88
VIEW-DEFN command

description 29
example 72
syntax 72

view-name, in INCLUDE
statement 98

views
active, displaying 73
listing be signed-on user 74
logical 77
user 77

VIEWS command
description 28
example 73
syntax 73

VIEWS-FOR-USER command
description 29
example 74
syntax 74

VSI. See Validity Status Indicator
(VSI)

Index

140 P26-8331-62

W

warning message, with
RELEASE statement 120

X

X failure 106

Z

zoned values, and ASI 82

	Back to DOCUMENTATION MENU
	About this book
	Using this document
	Document organization
	Revisions to this manual
	Conventions

	SUPRA Server documentation series

	Chapter 1 - Overview of PL/I application programming with RDM
	Application programming overview
	Using RDM to write PL/I programs
	Understanding RDM views
	Creating user views
	Understanding columns and keys

	Introduction to the Relational Data Manipulation Language (RDML)
	Introduction to the DBAID Utility subset

	Chapter 2 - Using the DBAID Utility subset
	DBAID commands list
	DBAID formatting guidelines
	DBAID commands
	= command
	BYE command
	BY˚LEVEL command
	CAUTIOUS command
	COLUMN-TEXT command
	COMMIT command
	DELETE command
	ERASE command
	FIELD-DEFN command
	FORGET command
	GET command
	GO command
	INSERT command
	KEEP command
	LINESIZE command
	MARK command
	MARKS command
	OPEN command
	PAGESIZE command
	RELEASE command
	RESET command
	SIGN-OFF command
	SIGN-ON command
	SURE command
	UPDATE command
	USER-LIST command
	USERS command
	VIEW-DEFN command
	VIEWS command
	VIEWS-FOR-USER command

	Chapter 3 - Coding RDM PL/I application programs
	Using the programmer's report
	Coding INCLUDE statements
	Specifying views and user views
	Specifying TIS_CONTROL
	RDM status indicators
	Function Status Indicator (FSI)
	Attribute (Column) Status Indicator (ASI)
	Validity Status Indicator (VSI)

	Signing on/off
	Maintaining storage
	Retrieving rows using the GET statement
	Retrieving rows containing unique keys
	Retrieving rows containing nonunique keys
	Retrieving rows without keys

	Accessing multiple views
	Using the MARK statement
	Using explicit and automatic record holding
	Explicit record holding
	Automatic record holding

	Handling error conditions
	Modifying rows
	Updating rows
	Deleting rows

	Using the INSERT statement
	Using the COMMIT/RESET statements
	Handling errors requiring a recompile

	Chapter 4 - RDM PL/I application program statements
	INCLUDE statements
	INCLUDE view˚data
	INCLUDE TIS_CONTROL

	Coding RDML statements
	COMMIT
	DELETE
	FORGET
	GET
	INSERT
	MARK
	RELEASE
	RESET
	SIGN_OFF
	SIGN_ON
	UPDATE

	Chapter 5 - Compiling and linking an RDM PL/I application program
	Executing the RDML precompiler
	Linking a compiled program
	OS/390
	VSE

	Appendix A - OS/390 and VSE samples and procedures
	OS/390 samples and procedures
	VSE samples

	Appendix B - Sample RDM PL/I application program
	Index

